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Abstract
People with Type 1 diabetes need to predict their blood glucose
levels regularly to keep them within a safe range. Accurate predic-
tions help prevent short-term issues like hypoglycemia and reduce
the risk of long-term complications. Evolutionary algorithms have
shown potential for this task by generating reliable models for
glucose prediction.

This work compares four evolutionary approaches: Structured
Grammatical Evolution (SGE), a float-based variant (SGEF), and two
probabilisticmethods, Probabilistic SGE (PSGE) andCo-evolutionary
PSGE (Co-PSGE). These methods are tested on their ability to pre-
dict glucose levels two hours ahead in individuals with diabetes.
Two aspects are examined: predictive performance and the diversity
of the phenotypes produced by each approach.

Results indicate that SGEF provides statistically better perfor-
mance than the other methods. Although PSGE and Co-PSGE do
not show statistically significant improvements in prediction ac-
curacy, they generate a broader set of solutions and explore more
distinct areas of the search space.
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1 Introduction
Genetic Programming (GP) [22] is an Evolutionary Computation
(EC) technique designed for the automatic evolution of programs.
GP approaches have become popular due to their success in tasks
such as program synthesis [14, 34, 41], symbolic regression mod-
elling [3, 33, 42], neuroevolution [4, 8, 47], achieving results in
several real-world applications such as glucose prediction in people
with diabetes [15, 18, 25].

Over time, researchers have proposed distinct representations
for solutions, variation operators, and other innovations. Among
the most successful variants of GP are those that rely on grammars
to decode solutions. Grammars have been used in GP to introduce
syntactic constraints to the solutions generated [28], avoiding un-
necessary search in unfeasible regions. The grammars can also be
designed to explore specific areas of the search space or include
domain knowledge about the problem at hand. The most well-
known grammar-based GP approaches are Context-Free Grammar
Genetic Programming (CFG-GP) [45] and Grammatical Evolution
(GE) [36, 37].

Another successful subset of GP involves the use of probabilistic
models to guide the search process [21, 40]. These methods often
replace standard genetic operations, such as crossover and muta-
tion, with resampling based on a learned probabilistic model. The
combination of grammars with probabilistic models was introduced
as early as the CFG-GP proposal [44]. Still, it was not until later
that it gained more interest.

In probabilistic grammar-based approaches, the grammar en-
codes the syntax of the programs and assigns probabilities to each
production rule, biasing the search, and also indicating the likeli-
hood of generating a valid program. These probabilities are updated
throughout the evolutionary process, often based on the best-fitted
individuals [19, 30], following a specific distribution [46], or a pre-
defined metric [7].

This study compares four approaches: standard Structured Gram-
matical Evolution (SGE) which uses an integer-based representa-
tion; SGEwith Float representation (SGEF), whichmodifies its varia-
tion operators to match a float-based representation; and two proba-
bilistic grammar-based variants, Probabilistic Structured Grammat-
ical Evolution (PSGE) and Co-evolutionary Probabilistic Structured
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Grammatical Evolution (Co-PSGE), both of which extend SGEF
by evolving the probabilities of selecting each production rule of
the grammar. In PSGE, the probabilities are updated during evolu-
tion based on production rules that create the fittest individual. In
Co-PSGE, each individual maintains its own probability distribu-
tion over the grammar rules, which can change through mutations
throughout the evolutionary process. To compare these methods, a
set of challenging problems was selected, previously used to assess
grammar-based GP approaches in the task of predicting glucose
levels in people with diabetes [15]. The prediction model takes into
account past glucose measurements, insulin doses, and carbohy-
drate intake to estimate glucose levels two hours ahead.

The experimental study includes two main analyses. First, the
performance of each method is assessed using error-based metrics,
supported by statistical testing. Second, the diversity of phenotypes
among the best individuals is examined through a two-dimensional
space generated using t-distributed Stochastic Neighbor Embedding
(t-SNE) visualization [16].

The remainder of the paper is structured as follows: Section 2
presents the background on grammar-based probabilistic GP ap-
proaches. Section 3 introduces the four approaches used for the
analysis. Section 4 details the problem and related work. Section 5
details the experimental setup and data used. Section 6 presents
the experimental results. Finally, Section 7 summarizes the main
findings and suggests directions for future research.

2 Background
Probabilistic grammar-based algorithms constitute a significant
subset of GP methods [21, 28, 40], where probabilities are assigned
to production rules, biasing the selection of rules during the genera-
tion of individuals. These approaches commonly use a Context-Free
Grammar (CFG) to define the syntax rules as seen in CFG-GP [44],
scalar and vector Stochastic Grammar-based GP (GP) [35], Gram-
mar model-based program evolution (GMPE) [39], Context Free
Grammar Transformation (CFGT) [6, 7], Univariate Model Building
Grammatical Evolution (UMBGE) [19, 20], Probabilistic Linear GP
(GP) [42], Probabilistic Grammatical Evolution (PGE) [30], PSGE
[32], and Co-PSGE [31]. However, some extend these by incor-
porating context, using a Context Sensitive Grammar (CSG) as in
Strongly Typed GP (GP) [43] and Grammar-based GP with Bayesian
Network (GP) [46], or by leveraging Lindenmayer systems, as in the
case of Program Evolution with Explicit Learning (PEEL) [38]. In
addition to evolving the probabilities, GMPE [39], CFGT [6, 7], and
PEEL [38] also evolve the structure of the grammar by dynamically
introducing new rules.

Most of these methods, such as GMPE, SG-GP, PEEL, CFGT, and
BGBGP fall under the category of Estimation Distribution Algo-
rithms (EDAs). As such, they do not use standard genetic variation
operators. Instead, they re-sample the population or a subset of
individuals during the run, using a probabilistic model to guide the
process. Other methods follow the principles of traditional evolu-
tionary algorithms, applying variation operators such as crossover
and mutation [30–32]. Hybrid approaches also exist, combining
both strategies: part of the population is sampled from the learned
probabilistic model, while the rest undergoes variation operators
[44].

CFG PCFG

NT Production rules Probability Ranges

<expr> <expr><op><expr> [0.00, 0.37]
<var> [0.37, 1.00]

<op> + [0.00, 0.22]
- [0.22, 0.39]
* [0.39, 0.68]
/ [0.68, 1.00]

<var> x [0.00, 0.41]
y [0.41, 0.67]
1.0 [0.67, 1.00]

Figure 1: Example of a CFG (left) and a PCFG (right). Both use the
same set of production rules, but the PCFG includes probability
ranges, where the size of each range corresponds to the rule’s selec-
tion probability.

3 Structured Grammatical Evolution
SGE [26] is an alternative representation to GE, offering a different
genotypic structure and mapping mechanism. In SGE, the genotype
is a set of dynamic lists of ordered integers. Each list is associated
with a non-terminal symbol of the CFG, and each element of the list
represents the index of a derivation rule to be expanded to create
the individual. An example of genotype is shown in Figure 2.

A CFG is a tuple 𝐺 = (𝑁𝑇,𝑇 , 𝑆, 𝑃) where 𝑁𝑇 and 𝑇 represent
the non-empty set of Non-Terminal (NT) and Terminal (T) symbols,
𝑆 is an element of 𝑁𝑇 in which the derivation sequences start,
called the axiom, and 𝑃 is the set of production rules. The rules
in 𝑃 are in the form 𝐴 ::= 𝛼 , with 𝐴 ∈ 𝑁𝑇 and 𝛼 ∈ (𝑁𝑇 ∪ 𝑇 )∗.
The 𝑁𝑇 and 𝑇 sets are disjoint. Each grammar defines a language
𝐿(𝐺) = {𝑤 : 𝑆

∗⇒ 𝑤, 𝑤 ∈ 𝑇 ∗}, that is the set of all sequences of
terminal symbols that can be derived from the axiom. An example
of CFG is represented on the left of Figure 1.

The mapping from genotype to phenotype is performed by ex-
panding production rules based on the codons in the genotype,
always expanding the leftmost non-terminal. The selected rule is
the one whose index appears first in the list associated with the non-
terminal being expanded. If genotypic changes result in an empty
list for a given non-terminal, new codons are randomly generated
and appended as needed. To prevent excessive growth, a maximum
tree depth is defined in advance. Once this limit is reached, only
rules that lead to the shortest possible expansions are allowed. After
selecting a derivation rule, the corresponding codon is added to the
list for that non-terminal in the genotype.

Figure 2 shows an example of the genotype-phenotype mapping,
using the grammar in Figure 1. Themapping starts with the axiom of
the grammar, in this case <expr>, and is expanded to the production
rule of index 0, since this is the first codon in the list associated with
the non-terminal <expr>. The index corresponds to the production
rule <expr><op><expr>, so the next token to expand is <expr>.
The next codon in the list is 1 so <expr> will be expanded to the
respective rule, i.e., <var>. Because this is the leftmost non-terminal,
to expand <var> we have to take the first element of this non-
terminal list, which is 2. Index 2 corresponds to the derivation
rule 1.0. Since this corresponds to a terminal symbol, it becomes
definitive, moving on to the next non-terminal, which is <op>. The
process is repeated until there are no more non-terminals to expand.
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Genotype
<expr> <op> <var>

[0, 1, 1] [1] [2, 0]

Derivation step Codon used
<expr> (0)
<expr><op><expr> (1)
<var><op><expr> (2)
1.0<op><expr> (1)
1.0/<expr> (1)
1.0/<var> (0)
1.0/x

Phenotype: 1.0/x

Figure 2: Example of the genotype-phenotypemapping of SGE, using
the grammar described in Figure 1.

Themutation operator changes a randomly selected codon, which
represents a production rule, to another valid one. The crossover
recombines two parents to generate the offspring. The offspring
inherits the list of each non-terminal from one of the parents, and
this decision is made based on a randomly generated binary mask.
The mask contains a binary value for each list of the genotype (i.e.,
one for each non-terminal of the grammar) [26, 27].

3.1 SGE with Float Representation
While standard SGE uses an integer representation in the genotype,
SGE variants [30–32] use floats as codons as an alternative represen-
tation of genotypes, which are then used to select the production
rule of the grammar. In the remainder of this paper, we will refer
to this representation as SGEF. The float representation requires a
different mapping and mutation mechanism. The genotype map-
ping is done through a Probabilistic Context-Free Grammar (PCFG),
maintaining the probabilities static throughout evolution. A PCFG
is a quintuple 𝑃𝐺 = (𝑁,𝑇 , 𝑆, 𝑃, 𝑃𝑟𝑜𝑏𝑠), extending CFG with 𝑃𝑟𝑜𝑏𝑠 ,
which is a set of probabilities associated with each production rule.
Figure 1 shows an example of a PCFG.

The individuals are represented by a set of dynamic lists, each
associated with a non-terminal of the grammar. The lists contain
an ordered sequence of real numbers, bounded to the interval [0,
1], with each codon corresponding to the probability of choosing a
production rule.

An example of an individual’s mapping process is depicted in
Figure 3, using the grammar in Figure 1. The process begins by
expanding the axiom of the grammar, <expr>, using the first codon
in the list of the respective non-terminal of the genotype, in this case
0.19. The non-terminal <expr> presents two derivation rules, with
different probabilities of being chosen. The 0.19 codon is included
in the range of probabilities of the first rule, <expr><op><expr>,
therefore expansion is made for that rule. The derivation is always
done from the leftmost non-terminal, so the next non-terminal to
expand is <expr>. The next available codon in the list of the non-
terminal <expr> is 0.46, which falls within the probability range
of the second expansion rule, <var>. The <var> will be the next
to expand and has three possible derivation rules. 0.32 is the first
codon available in the list of <var> of the genotype, and falls within
the range of probabilities covered by the first production rule, x,
which is a terminal symbol. <op> is the next symbol to expand,

Genotype
<expr> <op> <var>

[0.19, 0.46, 0.87] [0.27] [0.32, 0.64]

Derivation step Codon used
<expr> (0.19)
<expr><op><expr> (0.46)
<var><op><expr> (0.32)
x<op><expr> (0.27)
x-<expr> (0.87)
x-<var> (0.64)
x-y

Phenotype: x-y

Figure 3: Example of the genotype-phenotypemapping of a genotype
represented as floats, with a PCFG.

using the first codon available in the respective list to select a
production rule. In this case the codon is 0.27, which corrresponds
to the terminal symbol -. The procedure is repeated until a valid
individual is formed.

The mutation operator randomly selects codons, based on the
probability of mutation previously defined. A Gaussian mutation is
applied to these codons, bounding the new values in the interval
[0, 1]. These types of mutations have been widely used in the litera-
ture and have proven to be a good approach to make small changes
in the search space [5, 9]. Figure 4 shows an example of Gaussian
mutation in an individual. Assuming that the second codon of the
non-terminal <expr> was randomly selected (0.46), and the value
generated with a normal distribution of mean 0 and standard de-
viation 0.50 (𝑁 (0, 0.50)) was −0.17, the codon will now assume a
value of 0.29 (0.46 − 0.17 = 0.29).

The crossover operator combines the genetic material of two
individuals to generate an offspring, similarly to the crossover
mechanism employed by SGE [26].

If after mutation and crossover, the mapping process generates
an invalid phenotype, these can be randomly generated as needed. If
the depth limit is surpassed, the algorithm considers only the rules
that correspond to the shortest path, and adjusts the probabilities
of each of them, so that the sum is 1. Using the new probabilities,
the production rule is chosen with the normal procedure: It is
verified whether the codon belongs to the probability range of each
production rule of the non-terminal to be expanded and when this
condition is verified, the rule is chosen.

Genotype before mutation:

<expr> <op> <var>

[0.19, 0.46, 0.87] [0.27] [0.32, 0.64]

Gaussian mutation: N(0, 0.50) = -0.17

Genotype after mutation:

<expr> <op> <var>

[0.19, 0.29, 0.87] [0.27] [0.32, 0.64]

Figure 4: Example of a mutation applied to codon 0.46 of the non-
terminal <expr>. The mutation value was drawn from a Gaussian
distribution with mean 0 and standard deviation, 𝜎 , 0.50, (N(0, 0.50))
was -0.17. After mutation, the resulting codon is 0.29 (0.46-0.17).
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3.2 Probabilistic Structured Grammatical
Evolution

PSGE [32] employs a float-based genotype representation, simi-
lar to SGEF, but differs by evolving the probabilities of the PCFG
through generations. In PSGE, at the end of each generation, the
probabilities of the PCFG are updated based on the frequency of the
production rules used to map an individual. It alternates between
the best individual overall and the best individual from the current
generation. All genotypes are re-mapped according to the newly
updated grammar, possibly forming new individuals.

The probabilities are updated by iterating thorugh each produc-
tion i of each non-terminal j used during expansion of the current
best individual or best individual overall. A counter tracks the num-
ber of times each production was chosen. The probability (prob_i)
in the PCFG contains the current probability of selecting that pro-
duction. If the count is greater than zero, that is, the production
rule was used to map the individual, prob_i is updated using (1). If
the count is zero, that is, the production rule has not been used by
the individual, prob_i is updated using (2). The learning factor is
represented by 𝜆, with 𝜆 ∈]0, 1], and is used to make the transitions
on the search space smoother.

𝑝𝑟𝑜𝑏𝑖 =𝑚𝑖𝑛(𝑝𝑟𝑜𝑏𝑖 + 𝜆 ∗ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑖∑𝑗

𝑘=1 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑘
, 1.0) (1)

𝑝𝑟𝑜𝑏𝑖 = 𝑝𝑟𝑜𝑏𝑖 − 𝜆 ∗ 𝑝𝑟𝑜𝑏𝑖 (2)

After updating the probabilities using the equations, these are
normalized, to ensure that the sum of the probabilities for the
production rules of each non-terminal equals 1.

3.3 Co-evolutionary Probabilistic Structured
Grammatical Evolution

Co-PSGE [31] extends SGEF by assigning to each individual its
probability distribution associated with the rules of the grammar,
used to map the genotype. At the end of each generation, the proba-
bilities of the PCFG of each individual are itself subject to variation
through mutations, with Gaussian mutations applied.

This process is demonstrated in Figure 5. There are two parame-
ters for this process, the mutation rate (between 0 and 1) and the
normal distribution standard deviation. The mutation probability
is used to check for each non-terminal production rule whether
mutation should occur. In is shown in Figure 5 the example of
this process for the non-terminal <expr>. When a production is
selected for mutation (step 1 of the mutation process depicted in
Figure 5), it is generated a value from a Gaussian distribution of
mean 0 and the standard deviation previously defined (step 2), in
which in the example the value generated is 0.08. The generated
value is added to the value of the production rule selected (step 3)
keeping the new value in the range [0,1], and then the values of
the other rules are adjusted so the sum of the probabilities of all
the production rules of a non-terminal is 1. The grammar of the
parent with the best fitness is passed on to the offspring during
crossover. The individual’s phenotype is updated at the end of each
generation using the new grammar and genotype.

Original PCFG Rule Probabilities:
<expr> → <expr><op><expr> [0.37]
<expr> → <var> [0.63]

Mutation (Rate=0.1, N(0,0.5))

Mutation Process:
1. Random check (0.1): Mutate first rule
2. Add Gaussian N(0, 0.5) = +0.08
3. New probability: 0.37 + 0.08 = 0.45
4. Adjust other probabilities to sum to 1.0

Resulting PCFG Rule Probabilities:
<expr> → <expr><op><expr> [0.45]
<expr> → <var> [0.55]

Figure 5: Example of PCFGprobabilitymutation process employed in
Co-PSGE. A production rule is randomly selected for mutation based
on the mutation rate previously defined. The probability associated
to the selected rule is modified by adding a value drawn from a
Gaussian distribution N(0, 𝜎).

4 Glucose Prediction
Insulin is a hormone, naturally produced by the pancreas, responsi-
ble for breaking down sugar molecules (glucose) and converting
them into energy for the body. Diabetes mellitus is a metabolic
disease where the body either does not produce enough insulin or
does not respond to it properly, leading to abnormally high glucose
levels in the blood.

The number of people living with the disease is continually
increasing, with around 537 million adults suffering from the con-
dition in 2021 [12], which equates to approximately 1 in 10 adults.
Type 1 diabetes is an autoimmune disease in which the immune
system destroys the cells of the pancreas, usually permanently, so
that little or no insulin is produced [1]. Type 2 diabetes is diagnosed
when the body develops resistance to insulin, although the pancreas
might still be able to produce it [13]. This is the most common type
of diabetes, constituting more than 90 per cent of the cases.

There are several ways to control glucose levels. Most Type 2
patients who produce insulin rely on medication, while Type 1
patients inject synthetic insulin. Despite the use of medication,
diet and exercise play a very important role in managing blood
sugar levels and preventing cardiovascular disease. Another impor-
tant factor in controlling the disease is monitoring blood glucose
levels. Continuous Glucose Monitoring (CGM) devices provide real-
time information about blood sugar levels, which is not only less
invasive than doing multiple finger pricks a day, but also gives pa-
tients and their healthcare providers more data to better understand
how levels fluctuate with food intake, exercise or even stressful
events. For patients who inject insulin, it facilitates the process of
calculating the amount to inject, to keep blood glucose within a
healthy range. Too much insulin can cause low blood sugar (hy-
poglycaemia), which over a prolonged period can lead to organ
failure, permanent brain damage or even death [10]. High blood
sugar (hyperglycaemia) can cause heart problems or even stroke
[11].

The data collected by CGM devices allows different machine
learning algorithms to develop predictive models to help people
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with diabetes [2, 23, 24]. Among these approaches, grammar-based
GP algorithms have also been studied in diabetes prediction prob-
lems and have shown promising results.

Hidalgo et al. [15] introduced a dataset comprising data from 10
patients at a public hospital in Spain. The dataset includes informa-
tion collected over several weeks using Medtronic CGMs, recorded
at 5-minute intervals, along with estimates of carbohydrate intake
provided by the patients and the amount of insulin injected. This
same dataset was used in a study [15], where two Evolutionary
Algorithms (EAs), namely GP and GE, were compared with two
machine learning algorithms, such as random forests and k-nearest
neighbors. In this study, predictions were made considering fore-
casting windows of 30, 60, 90, and 120 minutes. The results showed
that GE and GP presented better or similar performance when
compared with the other approaches, with the solutions generated
being smaller and potentially better suited for integration into wear-
able devices. Additionally, SGE [26] was compared with GE in the
glucose prediction problem [15] using the same dataset and gram-
mar, but only 120-minute windows were considered. Results were
consistent with previous works, with SGE showing better results
in both training and testing. The resulting models also proved to
be more robust, with statistically significant differences observed
for all patients.

Recently, a more in-depth analysis was performed [17] on per-
formance, tree depth, and feature selection in grammar-based al-
gorithms SGE, CFG-GP, and GE. All algorithms were compared
using the same framework and parameters. Results showed that
tree-based CFG-GP performed best on training data, resulting in
deeper trees, but performed similarly or better than SGE on testing
data. With a smaller tree depth limit, SGE had better average fitness,
though without statistical differences. GE and SGE relied more on
feature selection, making their solutions more interpretable, while
CFG-GP relies more on feature construction. A follow-up study [18]
analyzed different initialization methods but found no statistical
differences, highlighting the stronger impact of representation.

5 Experimental Study
To understand how the different probabilistic approaches affect the
search, we compare PSGE and Co-PSGE with standard SGE (with
integer representation of solutions), and SGEF (with a float repre-
sentation). This enables a fair comparison between the approaches,
helping to understand if the differences observed are due to the
representation or the evolution of the probabilities.

The dataset and grammar used to predict glucose values is the
one proposed by Hidalgo et al. [15], and subsequently used by SGE
[25] and other grammar-based GP algorithms [17]. We use data
from 10 patients, which contains information on the amount of
carbohydrate consumed (estimated by the patients), the amount
of insulin injected, and the blood glucose value. The solutions are
evaluated with the Root Mean Squared Error (RMSE) between the
predicted values and the target values, with the goal of minimizing
the error.

In this paper, we processed the data so that the part of the dataset
used for training and the part used for testing had similar averages.
Table 1 presents the average of the blood glucose (mg/dl) data on
train and on test.

Table 1: Mean and standard deviation of the blood glucose (mg/dl)
data on train and on test.

Patient Train Test
1 159.01 ± 49.27 158.77 ± 38.96
2 151.35 ± 51.47 151.16 ± 39.08
3 142.69 ± 36.78 143.02 ± 32.21
4 154.81 ± 47.66 237.58 ± 32.55
5 141.12 ± 55.91 140.94 ± 41.65
6 147.48 ± 55.58 147.65 ± 55.29
7 176.34 ± 65.13 176.46 ± 63.11
8 136.03 ± 44.43 136.31 ± 45.42
9 148.59 ± 56.50 148.21 ± 55.56
10 169.59 ± 83.24 169.40 ± 82.78

Table 2: Parameters used in the experimental analysis.

Algorithm
Parameter SGE SGE Float PSGE Co-PSGE
Number of runs 30
Population size 200
Generations 500
Selection method Tournament, size 3
Elitism 10%
Crossover rate 0.9
Mutation rate 0.05
Mutation Int. flip Gaussian N(0, 0.5)
Max. Init. Depth 6
Max. Tree Depth 17
Learning Factor - - 0.01 -
PCFG Mutation Rate - - - 0.025
PCFG Mutation - - - N(0, 0.5)

5.1 Parameters
The experiments were conducted using the parameters previously
employed by grammar-based GP approaches in this problem [17,
25], which are common for all the four approaches. In particu-
lar, crossover and the selection operators such as tournament and
elitism operate comparably across all four algorithms. Because of
the differences in the genotype representation, the mutation is dif-
ferent between the approaches. On SGE the mutation changes the
codon with a different integer, in PSGE, Co-PSGE, and SGEF the
mutation changes the codon by adding a Gaussian mutation of
distribution N(0, 0.5) (for more details, refer to Section 3.1). The
probabilistic variants, PSGE and Co-PSGE present additional pa-
rameters related to the update of the probabilities of the grammar.
Specifically, the learning factor in PSGE, while Co-PSGE incorpo-
rates the probability of mutating the probabilities of the grammar,
and the values from the Gaussian distribution to generate the muta-
tion. The probabilities assigned to the production of the grammars
for PSGE and Co-PSGE, are uniform at the beginning of the evolu-
tionary process. Table 2 shows the parameters for each algorithm.
The code used in the experiments is publicly available1.

6 Experimental Analysis
Two different analysis were conducted in this study. First, a perfor-
mance analysis, followed by an analysis of the phenotypic space
explored by the four algorithms.

6.1 Performance Results
To evaluate the performance of the algorithms, we average the
results of 30 runs, with a Stratified 8-fold crossvalidation, followed
by a statistical analysis for model comparison. Since the populations
1https://github.com/jessicamegane/
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Table 3: Median and standard deviation of lowest RMSE obtained
on the train dataset, and effect size (r). Values in bold show the
algorithm that presented to be better with statistical differences
when compared with SGE. Results are average of 30 runs.

SGE SGEF PSGE Co-PSGE
P Median Median r Median r Median r
1 47.92 ± 1.14 47.41 ± 1.81 + 47.89 ± 2.40 ∼ 48.16 ± 1.87 ∼
2 48.48 ± 2.37 47.72 ± 4.26 + 49.06 ± 4.62 ∼ 49.98 ± 3.00 -
3 36.49 ± 1.21 36.30 ± 1.65 + 37.34 ± 2.11 - 36.60 ± 2.09 -
4 47.03 ± 1.01 46.71 ± 1.12 + 47.01 ± 1.88 ∼ 47.14 ± 1.50 ∼
5 56.12 ± 0.82 55.90 ± 1.36 + 56.21 ± 2.30 - 56.24 ± 1.59 -
6 49.63 ± 1.22 49.13 ± 2.16 + 49.63 ± 2.75 ∼ 49.80 ± 1.64 -
7 61.23 ± 0.89 60.18 ± 1.76 ++ 61.00 ± 2.49 ∼ 61.35 ± 1.12 -
8 42.30 ± 1.06 41.02 ± 1.45 ++ 41.57 ± 1.38 + 42.72 ± 1.15 -
9 47.72 ± 1.05 47.31 ± 1.85 + 47.68 ± 2.00 ∼ 47.84 ±2.23 -
10 71.54 ± 2.11 70.69 ± 3.69 + 71.47 ± 3.03 ∼ 72.84 ± 3.32 -

Table 4: Median and standard deviation of lowest RMSE obtained
on the test dataset, and effect size (r). Values in bold show the algo-
rithm that presented to be better with statistical differences when
compared with SGE. Results are average of 30 runs.

SGE SGEF PSGE Co-PSGE
P Median Median r Median r Median r
1 47.91 ± 1.82 47.40 ± 2.32 + 47.89 ± 2.40 ∼ 48.13 ± 2.32 ∼
2 48.63 ± 2.47 47.84 ± 4.34 + 49.06 ± 4.62 ∼ 49.89 ± 3.01 -
3 36.31 ± 1.31 36.16 ± 1.76 ∼ 37.34 ± 2.11 - 36.53 ± 2.23 -
4 46.80 ± 1.19 46.26 ± 1.26 + 47.01 ± 1.88 ∼ 46.77 ± 1.64 ∼
5 55.99 ± 1.25 55.77 ± 1.70 ∼ 56.13 ± 2.51 ∼ 56.16 ± 1.82 ∼
6 49.74 ± 1.32 49.44 ± 2.36 + 49.63 ± 2.75 ∼ 49.97 ± 1.75 ∼
7 60.78 ± 1.26 60.08 ± 1.87 + 61.00 ± 2.49 ∼ 61.07 ± 1.34 -
8 41.97 ± 1.27 40.67 ± 1.66 ++ 41.57 ± 1.38 + 42.56 ± 1.30 -
9 47.42 ± 1.21 46.89 ± 1.98 + 47.68 ± 2.00 ∼ 47.65 ± 2.40 -
10 71.83 ± 2.46 71.16 ± 5.13 ∼ 71.84 ± 3.47 ∼ 73.05 ± 3.73 -

were independently initialized and the results did not meet the
criteria for parametric tests, the Mann-Whitney non-parametric
test with Bonferroni correction was applied to assess meaningful
differences between the methods. To determine the significance of
the differences, the effect size, r, was calculated. In Tables 3 and 4
the "∼" sign was used when there were no significant differences
between samples. When there are differences, "+" or − denotes that
the approach is better or worse, respectively, with a small effect
size (r <= 0.3). "++" or "−−" represents a medium effect size (0.3
< r <= 0.5), and "+++" or "−−−" indicates a large effect size (r >
0.5). For all the statistical tests we considered a significance level
of 𝛼 = 0.05.

Table 3 and Table 4 show the median and standard deviation of
the best individuals in train and test, respectively, of each run and
fold, for each algorithm. Additionally, we show the effect size of
the statistical tests which compare SGEF with SGE, PSGE with SGE,
and Co-PSGE with SGE, to represent possible statistical differences
between the approaches. In both tables, SGEF presents lower me-
dian values, for all patients. It presents statistical differences for
all patients in training and for seven patients in testing, compared
to SGE. These results indicate that different representations have
significant impact on the results of glucose prediction, which is in
line with the analysis presented by Ingelse et al. [17, 18].

PSGE shows no statistical differences compared to SGE for most
patients, performing worse for Patient 3 and 5 but better for Patient
8, where statistical differences are present. PSGE only shows statis-
tical differences compared to SGE for Patients 3 and 5, performing
worse, and Patient 8 performing better. In testing, the results are

similar except for Patient 5, where no statistical differences are
observed. Co-PSGE is statistically worse than SGE for most pa-
tients. In training, it shows similar distributions for Patients 1 and
4. In testing, no statistical differences are observed for four patients
(Patients 1, 4, 5, and 6).

By analysing the medians of the best individuals, we can gener-
ally identify which model performed best in training and testing
for each patient. However, since this is a real-world problem, the
performance over 30 runs is less relevant when considering patient
treatment. The main objective of an algorithm in this context is to
produce the best possible regression model for predicting glucose
values. To assess this, we focus on the best individual overall for
each algorithm. Table 5 presents the training and test values of the
best individual overall for each algorithm and patient. Additionally,
we report the lowest test error obtained. In the table, values of the
"Best Individual" column in bold indicate the individual overall with
the lowest test error for each patient. In the "Best Test" column,
bold values highlight the algorithm that achieved the lowest test
error, while underlined values indicate test errors lower than those
of SGE.

By analysing the train and test values of the best individual in
train for each algorithm ("Best Individual" column), we observe that
SGE had the best individual performance in test for two patients
(patients 4 and 6), SGEF for four patients (Patients 1, 2, 7, 8), Co-
PSGE for three patients (Patients 5, 9, 10) and PSGE achieved the
best only for Patient 3. This indicates that the alternative approaches
generally outperform SGE, with PSGE being the least effective
among them, as it underperformed the others on all patients but
one. However, when compared directly to SGE, PSGE still yielded
better individuals for half of the patients.

Looking closely at the values of the best individuals, the dif-
ferences in error between most approaches are relatively small.
However, for Patients 5 and 10, SGE shows much higher errors
than the other approaches. These two patients generally exhibit
higher errors across all approaches, suggesting that the algorithms
have more difficulty to find a good model for them. Interestingly,
Co-PSGE found the best solutions for these two patients, despite
being statistically worse than SGE in training, and in test for Patient
10. Previous work [29] showed that PSGE and Co-PSGE generate
more unique solutions than SGE in the benchmark analysed, indi-
cating greater population diversity. While this diversity can help
in discovering better solutions, it can also lead to worse, which
may explain why Co-PSGE, despite its capacity of finding the best
solutions, does not outperform SGE on average across all runs.
This suggests that Co-PSGE might require more evolutionary time
(generations) to surpass the other approaches.

The "Best Test" column of Table 5 of each algorithm represents
the best test value obtained. These values are particularly important
as they indicate which algorithm is more likely to provide the
best model in real-world scenarios of prediction glucose values for
patients with diabetes. Table 5 shows that SGEF is the one who is
able to obtain the lowest test errors most frequently (values in bold),
presenting the lowest value than the other approaches in half of
the patients. To better analyse the performance of each algorithm
compared to SGE, we underlined the test errors lower than those
of SGE. PSGE, SGEF and Co-PSGE were able to obtain a lower test
error than SGE for 8, 7 and 6 patients, respectively. Patient 4 is the
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Table 5: Training and test errors of the best overall individual and the best test-set individual for each algorithm, shown per patient. Bold
values indicate the algorithm with the lowest error. Underlined values mark results that are better than those obtained by SGE.

SGE SGEF PSGE Co-PSGE
Best Individual Best Test Best Individual Best Test Best Individual Best Test Best Individual Best Test

P Train Test Train Test Train Test Train Test
1 45.75 46.09 45.12 44.74 44.51 43.91 45.07 46.12 44.22 44.78 44.83 43.79
2 43.76 43.54 43.54 43.61 43.24 43.24 43.91 43.47 43.47 43.79 44.06 44.06
3 35.23 34.79 34.36 35.05 35.83 34.50 35.13 34.09 34.09 35.41 34.98 34.73
4 45.24 44.04 44.04 45.19 44.84 44.65 45.18 45.83 44.51 45.21 44.20 44.20
5 54.65 55.93 53.35 54.29 53.78 52.93 54.35 54.75 52.91 54.52 52.83 52.83
6 47.54 47.15 47.12 47.26 47.22 47.15 47.47 48.59 46.99 47.64 47.68 47.13
7 58.93 58.87 58.20 57.52 57.93 55.89 58.42 58.99 56.33 58.42 59.38 57.48
8 38.88 39.52 38.55 37.96 37.79 37.29 38.84 39.40 37.70 38.46 39.02 38.31
9 45.68 44.89 44.66 44.80 45.42 42.66 45.67 45.60 44.87 44.99 44.36 44.23
10 67.19 68.73 65.94 66.05 64.95 64.29 65.81 67.92 65.49 66.51 64.84 64.60

only where SGE got better test value than the other approaches. It
is worth mentioning that for this patient, PSGE and Co-PSGE did
not show statistical differences compared to SGE, indicating they
were equivalent.

This comparison highlights that the alternative representation
of SGE not only achieves good values but may also provide a more
effective approach overall. Additionally, the evolution of the proba-
bilities of PSGE and Co-PSGE enables them to find better solutions
than SGE in most cases. While PSGE does not show statistical signif-
icance for most patients, it is the approach that was able to find the
best test results for 8 patients, making it the most suitable choice
for a real-world application. Additionally, Co-PSGE proves to be a
viable choice as well, particularly in more complex scenarios, where
it is able to find the best solutions for more challenging instances
like Patients 5 and 10.

6.2 Phenotype analysis
The previous analyses have shown that the algorithms behave dif-
ferently, and that in the case of algorithms with float representation,
including probabilistic approaches, they generally seem to find bet-
ter solutions. To see the differences between the algorithms, we
analysed the solutions in terms of their phenotype. The first analy-
sis consists of visualising the best individuals from each run and
fold of each algorithm, projected in two dimensions using the t-SNE
[16] method. The t-SNE embeddings were created using the best 15
individuals from each fold, run and algorithm, i.e. 14400 samples (8
folds, 30 runs, 15 individuals, 4 algorithms).

Figure 6 displays the t-SNE visualization for the four algorithms
in different generations. Each algorithm’s best individual from every
run and fold is projected into a two-dimensional space, allowing for
a clear comparison of their differences within the search space. SGE
is represented as blue circles, Co-PSGE as orange diamonds, SGEF
as green squares, and PSGE as red crosses. The size of the symbols
is related to their error: smaller shapes present higher error, and
bigger shapes, smaller errors. The best individual in training is
marked with a star, while the best in testing is represented by a
hexagon, each colored according to the corresponding algorithm.

Looking at the image from generation 500 (Figure 6d), it is no-
ticeable that the algorithms explore mostly distinct regions of the
search space. SGE predominantly covers the left side of the plot, and

SGEF occupies mostly the right side. Co-PSGE and PSGE are more
widely distributed. By looking at the evolution of the solution over
generations, we observe that they are more concentrated on the top
left at generation 50 (Figure 6a), and slowly expand to larger areas
of the search space. However, looking at generation 500 (Figure 6d)
only Co-PSGE and SGEF present solutions in the top right corner,
suggesting that these algorithms explore more unique regions of
the phenotypic space.

When comparing all algorithms, it becomes clear that the best
solutions from the SGE variants (SGEF, PSGE, and Co-PSGE) are
predominantly located on the right side of the plot. In contrast,
SGE’s best training solution is on the left, and its best test solution
lies in the middle of the lower quadrants. Since SGEF, PSGE, and
Co-PSGE consistently find better solutions than SGE, and the best
solutions are concentrated on the right side, this could indicate that
SGE’s limited exploration of this region might be a key reason for
its difficulty in finding the best solutions, despite having a good
performance overall. Another intriguing aspect of this analysis is
the proximity of certain solutions. For instance, SGEF’s Best Test
and Co-PSGE’s Best Test are close to each other, and Co-PSGE’s
Best Train is near PSGE’s Best Train and Test, with SGEF’s Best
Train also nearby. This raises the question of what these solutions
might have in common. One observation in the SGE solutions is
that they tend to be smaller. This aligns with findings from prior
studies [18], which demonstrated that SGE generates shallower
trees, explaining why its solutions are less complex. However, these
differences may also be attributed to similar patterns in the pheno-
type or the features selected, which requires further investigation
to analyze potential differences between the methods.

7 Conclusions and Future Work
In this paper we compared four approaches for glucose level pre-
diction in people with diabetes: standard SGE (which uses an inte-
ger representation); SGE with float representation (SGEF), which
modifies variation operators to suit its representation; and two
probabilistic grammar-based variants, PSGE and Co-PSGE, which
extend SGEF by evolving grammars that assign probabilities to
each production rule. We presented two different analysis. First,
we evaluated the performance of each approach in terms of error,
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(a) t-SNE for the best individuals on generation 50, for Patient 1. (b) t-SNE for the best individuals on generation 100, for Patient 1.

(c) t-SNE for the best individuals on generation 250, for Patient 1. (d) t-SNE for the best individuals on generation 500, for Patient 1.

Figure 6: t-SNE visualization of the best individuals of each algorithm at generation 500 for Patient 1. SGE is represented as blue circles,
Co-PSGE as orange diamonds, SGEF as green squares, and PSGE as red crosses. Best Train individuals are represented by a star, and the Best
Test individuals are represented by an hexagon.

presenting the statistical tests. Second, we investigated the phe-
notypes distribution of the best individuals in a two-dimensional
space created using t-SNE.

The results showed that the float based representation (SGEF) is
better than standard SGE for most patients in testing. Additionally,
we observed that all three SGE variants consistently found better
individuals in test than SGE. Specifically, PSGE, SGEF and Co-PSGE
surpassed SGE in 8, 7 and 6 patients out of 10, respectively.

In the second analysis, we saw that the projection of the phe-
notypes of each method is spread differently on the search space.
PSGE, SGEF and Co-PSGE’s best individual overall, in training and
in testing, are close to each other, while SGE’s solutions are in an
opposite area of the search space. A previous work showed that
Co-PSGE presented more unique solutions than PSGE and standard
SGE [29], and that is also observed in this paper. Co-PSGE was
the approach which more uniformly covered the search space. The
results indicated that the probabilistic approaches might need more
generations to surpass SGE statistically, despite being able to find
better solutions.

Future work should involve a more detailed analysis of the phe-
notypes, including the size and distribution of selected production
rules. In the case of probabilistic approaches, analyzing the probabil-
ities could complement the interpretation of the results. Addition-
ally, it would be valuable to compare the distribution of solutions
with the performance results for each patient, as this paper only
provides a brief analysis for Patient 1.
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