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ABSTRACT

Context-Free Grammars (CFGs) are used in Genetic Programming
(GP) to encode the structure and syntax of programs, enabling
efficient exploration of potential solutions and generation of well-
formed and syntactically correct programs. Probabilistic Context-
Free Grammars (PCFG) can be used to model the distribution of
solutions to help guide the search process. Structured Grammatical
Evolution (SGE) is a grammar-based GP algorithm that uses a list
of dynamic lists as its genotype, where each list represents the
ordered indexes of production rules to expand for each non-terminal
in the grammar. Two recent variants incorporate PCFG into the
SGE framework, where the probabilities of the production rule
change during the evolutionary process, resulting in improved
performance.

This study examines the impact of these differences on the be-
havior of SGE and its variants, Probabilistic Structured Grammati-
cal Evolution (PSGE) and Co-evolutionary Probabilistic Structured
Grammatical Evolution (Co-PSGE), in terms of population tree
depth, genotype size, new solutions generated, and runtime. The re-
sults indicate that the use of probabilistic alternatives can affect the
growth of tree depth and size and increases the ability to generate
new solutions.
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1 INTRODUCTION

Grammatical Evolution (GE) [11] is a Genetic Programming (GP)
algorithm [2] that uses a grammar-based representation of the solu-
tion space. The grammar allows the search space to be restricted and
to keep syntactically correct solutions, which has been an impor-
tant addition to the evolution of computer programs [6]. Although
there are other grammar-based GP approaches, GE has become one
of the most popular.

One of the major differences to traditional GP, is that while in GP
the individuals are represented as trees and the variation operators
act directly on them, in GE there is a separation between genotype,
a list of integers, and phenotype, the solution of the problem. The
mapping from the genotype to the phenotype follows the rules of
a Context-Free Grammar (CFG). The representation and variation
operators used by GE present some known issues, such as low
locality [15] and high redundancy [10, 14], which leads to a poor
exchange between exploration and exploitation, sometimes having
behaviour comparable to random search [16].

Structured Grammatical Evolution (SGE) [3] is a GE variant that
tackles its main issues, showing better performance when compared
to GE and other grammar-based approaches [4], but also improved
locality and lower redundancy [5].

Recently, two variants of SGE have been proposed that resort to
a Probabilistic Context-Free Grammar (PCFG) during the mapping
[7, 8]. Probabilistic grammars contain probabilities associated with
each production rule, which if changed during the evolutionary
process can help constrain and bias the search space. In Probabilistic
Structured Grammatical Evolution (PSGE) [8] at each generation,
the probabilities of the grammar are updated based on the rules
expanded by the best individual. In Co-evolutionary Probabilistic
Structured Grammatical Evolution (Co-PSGE) [7] each individual
contains a grammar, and each generation the grammar can mutate
its probabilities.

In this work, we study the impact of the use of PCFG in the
behavior of the algorithms and compare the results with the origi-
nal SGE. Some metrics collected during the experiments from the
population are tree depth, genotype size, new solutions generated,
fitness and execution time of each generation.

The population tree depth and size play a crucial role in the
evolution process. A shallow tree depth limits the diversity of the
population, whereas a large tree size increases the computational
cost and can lead to overfitting the training data. Therefore, it is cru-
cial to find a balance between these two factors to ensure efficient
exploration of the solution space and the generation of high-quality
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solutions. The results indicate that the use of probabilistic alter-
natives can affect the growth of tree depth and size, and generate
new solutions. Our findings showed that Co-PSGE and PSGE tend
to generate bigger trees, which results in a bigger percentage of
unique solutions in the population. SGE has been shown to benefit
from a larger population sample.

The remainder of this work is structured as follows: Section 2
presents the related work, Section 3 details the experimental setup
and results, and Section 4 gathers the main conclusions and provides
some insights regarding future work.

2 BACKGROUND

Probabilistic models in GP [1] have been widely explored in the
literature and successful in solving complex problems. The models
follow two main approaches, such as resampling the population
with probabilistic distributions [9, 12] or use a grammar to define
the search space and bias the search [7-9]. Some of these meth-
ods have been analyzed using metrics beyond performance, which
have revealed various issues depending on the approach, including
problems such as bloat or bias towards small trees.

Estimation Distribution Algorithm (EDA) is a class of optimiza-
tion algorithms that search for solutions by modelling and then
sampling from the probability distribution over candidate solutions.
Estimation of Distribution Programming (EDP) combines EDA with
GP, and replaces variation operators by sampling the population
each generation from a Bayesian model based on observed relative
frequencies of node values in the solutions of a population [17, 18].

Schweim et al. [13] studied the bias of the EDP model and found
that the model overfits the training data. Adding noise to the model
to prevent overfitting results in a bias towards small trees.

Ratle et al. [9] proposed Stochastic Grammar-based GP, a method
that has a probability distribution associated with the grammar
rules, and each generation the probabilities of the rules of the
grammar are updated based on a set of best and worst solutions.
This approach tackles one of the main limitations of GP which is
the bloat problem.

In SGE [3] the genotype is a list of dynamic lists, where each list
represents the ordered indexes of production rules to expand for
each non-terminal in the grammar. This algorithm presented better
performance when compared to GE, and other grammar-based
approaches [4], but also improved locality and lower redundancy
[5]. Recently, two variants of SGE have been proposed that resort
to a PCFG during the mapping [7, 8]. These two methods maintain
the same genotype structure as SGE, with the elements of each list
corresponding to the probability of choosing a production rule. In

Table 1: Parameters used in the experimental analysis for SGE, PSGE
and Co-PSGE.

Params 1 Params 2

Population Size 1000 250
Generations 200
Elitism Count 100 25
Mutation Rate 0.05 0.10
Crossover Rate 0.90 0.90
Tournament 3

Max Depth 10 8
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PSGE [8] at each generation, the probabilities of the grammar are
updated based on the rules expanded by the best individual. In Co-
PSGE [7] each individual contains a grammar, and each generation
the grammar can mutate its probabilities.

3 EXPERIMENTAL SETUP

In order to study the impact of the probabilistic grammars, SGE,
PSGE and Co-PSGE were executed over 100 independent runs.

In each run we collect information about tree depth, number of
nodes, percentage of unique individuals, runtime and fitness. The
parameters used in the experiments are summarised in Table 1.

The mutation performed on PSGE and Co-PSGE adds to the
value of the codon a value generated with a Gaussian distribu-
tion of N(0.0,0.5). The mutation of SGE replaces the codon with a
different rule. The three methods have one-point crossover. Two
experimental parameters were tested. Params 1 was defined based
on the analysis of Schweim et al. [13], however in this paper the
evolution is fitness-driven and employ selection mechanisms such
as elitism, while in [13] were conducted random walks. The sec-
ond set, Params 2, was defined based on the previous experiments
conducted with these methods [5, 7, 8].

The experiments were set for finding the function defined by
Pagie polynomial, a symbolic regression problem. The fitness func-
tion used to evaluate the individuals is the Root Relative Squared
Error (RRSE) between the individual’s solution and the target on
a data set. The function is sampled with x[0], x[1] € [-5, 5] with a
step of 0.4. The division and logarithm functions are protected, i.e.,
1/0 =1 and log(f(x)) =0

The solutions are generated using Grammar 1. PSGE and Co-
PSGE initialize the probabilities of the rules of each non-terminal
of the grammar with a uniform distribution.

<start> ::= <expr>

<expr> ::= <expr> <op> <expr> | <pre_op> (<expr>) | <var>
<op> :=+ | - | x|/

<pre_op> ::= sin | cos | exp | log

<var> ::= x[@] | x[1]1 | 1.0

Grammar 1: Symbolic Regression grammar.

3.1 Results analysis

The performance of the algorithms is analysed by averaging the
fitness of the best individual of each generation of the 100 runs.
Statistical tests were performed in order to support the analy-
sis. We first apply the non-parametric Kruskal-Wallis test, since
the populations were initialized independently and the results do
not meet the criteria for parametric tests, in order to ascertain sig-
nificant differences between the methods. When differences are
observed, the Mann-Whitney post-hoc test with Bonferroni correc-
tion is applied to verify in which pairs the difference exists, with
a significance level of o = 0.05. Additionally, the effect size r was
calculated to determine how significant the differences are. The
following notation was used: "." was used when there are no sig-
nificant differences between samples; "+" sign for small effect size
(r <= 0.3); "++" for medium (0.3 < r <= 0.5), and "+++" for large
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(r > 0.5). Table 2 shows the statistical results between each method
for each set of parameters. Statistical differences are only observed
using the Params 2, between SGE and PSGE, and between SGE and
Co-PSGE.

Table 2: Results of the Mann-Whitney post-hoc statistical tests ap-
plied to the performance data. The Bonferroni correction is used
considering a significance level of « = 0.05.

p-value effect size
Params 1
SGE - PSGE 0.225 ~
SGE - Co-PSGE 0.099 ~
PSGE - Co-PSGE ~ 1.355 ~

Params 2
SGE - PSGE 0.00 ++
SGE - Co-PSGE 0.00 ++

PSGE - Co-PSGE  0.371 ~

In the case of Co-PSGE we tested the parameters 5% and 10% for
grammar mutation probability. As 5% showed better performance,
in this paper the results that were created using this value are pre-
sented. It should be noted that it was observed that, for this problem,
a higher grammar mutation probability led to the creation of indi-
viduals with more nodes, but the same depth, on average. In the
case of PSGE, 0.01 and 0.05 were tested for the learning factor and,
as expected, with higher value there is premature convergence of
performance, slightly smaller trees are created, and the percentage
of unique solutions decreases.

SGE params 1
PSGE params 1

-~ PSGE params 2
Co-PSGE params 2

Figure 1: Performance results for the Pagie polynomial. Results are
the mean best fitness of 100 runs.

Fig. 1 presents the performance results depicted as the mean
of the fitness of the best individuals of each generation of the 100
runs. Looking at the figure, we can observe that the performance
of PSGE and Co-PSGE is very similar, ending with better average
fitness when compared with SGE in both set of parameters.

Using Params 1 there were no statistical differences observed,
however using the second set of parameters, both PSGE and Co-
PSGE surpassed SGE with large statistical differences. These results
indicate that SGE may need more individuals to improve results.

Looking at the average of the depths of the populations in Fig. 2 it
is possible to see that SGE presents, in average, smaller individuals.
Co-PSGE average increases rapidly, followed by PSGE. After 100
generations for Params 2 and 50 generations for Params 1, PSGE sta-
bilizes, ending up with mean and standard deviation values similar
to the Co-PSGE. Despite initial differences in average tree depth, no
difference in performance can be seen. It is also interesting to note
that SGE tend to stabilize near the maximum depth defined (10 for
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Figure 2: Average tree depth of the population over 100 runs.

Params 1 and 8 for Params 2), while the probabilistic alternatives
surpass that value.

SGE params 1
PSGE params 1
Co-PSGE params 1

-+ SGE params 2

=+ PSGE params 2

200 Co-PSGE params 2
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Figure 3: Average genome length of the population over 100 runs.

Fig. 3 shows the average genotype length. After initialization
the length of the genotype increases in all methods. If we observe
the results of Params 1, we are able to see that in average, the
genotype length on Co-PSGE individuals is bigger, with a large
standard deviation. All remaining methods have a smaller standard
deviation in comparison. It is followed by SGE and, ending with
smaller average, is PSGE. PSGE starts with even lower average than
the results generated for Params 2. For the second set of parameters,
PSGE starts with a smaller average of genotype size than SGE
but grows faster, catching up and surpassing it after at least 125
generations. Co-PSGE has a similar curve as PSGE, but with an
average of 20 codons higher.

SGE params 1
60| PSGE params 1

Average Used search

0 25 50 75 125 150 175 200

100
GENERATIONS

Figure 4: Average of the percentage of unique solutions in the popu-
lation over 100 runs.

In both experiments, Co-PSGE has a sudden increase in the
average and standard deviation, around 25 generations for Params
1and around 125 with Params 2. This may imply that the algorithm
suffers from bloat, in which the individual’s size increase, but there
is no corresponding improvement in fitness. However Mégane et
al. [7] tested this method in different problems, and showed that
Co-PSGE was able to surpass SGE’s performance in two complex
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problems, which may imply that this algorithm is better when
finding more complex and difficult solutions.

Fig. 4 shows the percentage of unique solutions in the population.
The algorithms show a higher percentage of unique solutions with
Params 2, i.e. when less population is used. In the case of SGE the
difference is lower than in the probabilistic versions, supporting
the theory that it benefits more from a larger sample size.

100
SGE params 1
PSGE params 1
Co-PSGE params 1
80 . SGE params 2
~=- PSGE params 2
Co-PSGE params 2

Average Time taken

o 2 50 75 125 150 175 200

100
‘GENERATIONS,

Figure 5: Average execution time of each generation over 100 runs.

Lastly, Fig. 5 represents the average time of each generation for
each algorithm, and we can see that the probabilistic versions take
longer, and for a large sample population Co-PSGE has a slightly
higher average.

4 CONCLUSIONS

In this paper, the performance and behaviour of three algorithms -
SGE, PSGE, and Co-PSGE - was analyzed in two sets of parameters.

The results showed that two of the algorithms, PSGE and Co-
PSGE, performed very similar and outperformed SGE in the set of
parameters with a smaller sample of individuals. The average of the
depths of the populations indicated that SGE presented, on average,
smaller individuals. The results of SGE tended to stabilize near
the maximum depth defined, while the probabilistic alternatives
exceeded this value. Co-PSGE starts with higher average, but after
a certain number of generations, PSGE stabilized with mean and
standard deviation values similar to Co-PSGE.

The analysis of the average genotype length showed that after
initialization, the length of the genotype increased in all methods.
The results indicated that Co-PSGE had a bigger average genotype
size with a large standard deviation, followed by SGE and PSGE.
For the second set of parameters, PSGE grew faster and surpassed
SGE. Co-PSGE presented a higher average of codons.

In conclusion, the analysis of the percentage of unique solutions
in the population showed that the probabilistic algorithms had a
higher percentage of unique solutions when a smaller population
was used. The probabilistic versions had a higher difference than
SGE, which may imply that SGE benefits more from a larger sample
size. Previous work [7] tested the Co-PSGE method on different
problems and showed that it was able to surpass SGE’s performance
in two complex problems, implying that this algorithm is better at
finding more complex solutions.

This study can be extended by analyzing the impact of other
factors like grammar-design, problem complexity and variation
operators. The analysis can help to understand the strengths and
weaknesses of the algorithms, relevant for their future develop-
ment.

Mégane et al.
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