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Abstract. Languages that describe two-dimensional (2-D) structures
have emerged as powerful tools in various fields, encompassing pattern
recognition and image processing, as well as modeling physical and chem-
ical phenomena. One kind of two-dimensional structures is given by la-
beled polyominoes, i.e., geometric shapes composed of connected unit
squares represented in a 2-D grid. In this paper, we present (a) a novel
approach, based on grammars, for describing sets of labeled polyomi-
noes that meet some predefined requirements and (b) an algorithm to
develop labeled polyominoes using the grammar. We show that the two
components can be used for solving optimization problems in the space
of labeled polyominoes, similarly to what happens for strings in gram-
matical evolution (and its later variants). We characterize our algorithm
for developing polyominoes in terms of representation-related metrics
(namely, validity, redundancy, and locality), also by comparing different
representations. We experimentally validate our proposal using a simple
evolutionary algorithm on a few case studies where the goal is to obtain a
target polyomino: we show that it is possible to enforce hard constraints
in the search space of polyominoes, using a grammar, while performing
the evolutionary search.
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1 Introduction

Two-dimensional (2-D) languages have emerged as powerful tools in various
fields, initially motivated by problems in pattern recognition and image pro-
cessing [4, 6, 14]. These languages generate 2-D objects and can be designed to
generate either a simple rectangle or a more intricate shape such as a decagon.
One shape that has garnered significant interest due to its unique properties
[1, 5, 13] and wide-ranging applicability [8, 15, 21, 25, 26, 28, 29, 34] is the
polyomino.

Polyominoes [7] are geometric shapes composed of connected unit squares,
forming a finite set of cells within a 2-D grid. These shapes are also commonly
referred to as lattice animals in the physical [8] and chemical [26] fields, where
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they have been popularly used to model branched polymers, molecules and per-
colation processes, providing valuable insights into the behavior of these com-
plex systems [3, 37]. The field of combinatorial optimization and mathematics
has extensively explored polyominoes, due to their rich mathematical proper-
ties [1, 5, 13]. Similarly, the theoretical formal language domain has been inspired
by their practical usages.

In these fields, it is often crucial to find one or more polyominoes that maxi-
mize specific objectives while satisfying predefined structural requirements. Two
powerful mechanisms for describing and generating 2-D shapes are grammars
[15, 25, 27, 29, 38].

Grammars define a language with a set of rules that can impose certain con-
strains. These grammars can be designed either as one-dimensional encodings
of two-dimensional structures [38] or be two-dimensional structured representa-
tions [27, 29]. To the best of our knowledge, there exists only a single approach
that utilizes grammars to define polyominoes constraints and then attempts to
optimize them [38], namely, for finding an assembly of identical polyominoes.
While this represents the only usage of a grammar to define polyominoes in the
literature, numerous examples exist where grammars are employed to generate
2-D pictures [12, 14, 18, 35], finding practical applications in popular tasks such
as mathematical formula recognition [15, 25, 29].

Polyominoes can be further enhanced by assigning labels to individual cells,
providing additional information for each cell within the structure. In this paper,
we present a novel approach for generating labeled polyominoes that meet some
structural requirements defined in a formal way: for this purpose, we (a) define
the concept of polyomino context-free grammars (PoCFGs) as an extension of
context-free grammars (CFGs) and (b) propose a development algorithm that
can be used for generating a polyomino adhering to a PoCFGs. Our proposed al-
gorithm constructs these polyomino structures with precise control of the shape
of the polyomino and labeling of its cells. When used inside an evolutionary al-
gorithm (EA), it allows solving optimization problems over the space of labeled
polyominoes adhering to a given PoCFG. This process only requires the provi-
sion of a grammar and a fitness function to the selected EA; notably, it does not
require users to provide variation operators that guarantee that varied polyomi-
noes will still adhere to the PoCFG—i.e., operators with the closure property.
This fact greatly increases the applicability of our approach, lowering the bar-
rier to polyominoes optimization, much like grammatical evolution (GE) [31] did
with regular languages.

Since our algorithm is greatly agnostic with respect to the genotypic repre-
sentation employed by the EA, we compare different representations in terms of
representation-related metrics (validity, redundancy, and locality). Moreover, to
showcase the effectiveness of our approach, we evolve some polyominoes in a few
case studies where the goal is to evolve a polyomino adhering to a grammar that
is as much as possible similar to a pre-defined target polyomino. We show ex-
perimentally that evolutionary optimization does work, giving polyominoes that
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are more and more similar to the target one while all adhering to the provided
grammar, i.e., meeting the user-defined constraints.

2 Our proposal: describing and evolving polyominoes

2.1 Labeled polyomino

A polyomino is a 2-D geometric figure formed by one or more squares (or cells)
joined together along their sides. A labeled polyomino defined over an alphabet A
is a polyomino in which each cell is associated with exactly one symbol (or label)
a ∈ A. For brevity, from now on we will write simply polyomino for referring to
labeled polyominoes. We denote by PA the set of all the polyominoes defined
over A.

By assigning a coordinate (x0, y0) ∈ Z2 to one of the cells of a polyomino p,
we denote by px,y ∈ A the label of the cell of p displaced by x − x0 cells along
the x-axis and y − y0 cells along the y-axis with respect to the cell at (x0, y0).
We write px,y = ∅ if there is no cell at (x, y) in p.

A referenced polyomino is a polyomino in which one cell is identified as ref-
erence cell. By convention, we assume that the reference cell is assigned to the
coordinate (0, 0).

2.2 Polyomino context-free grammar (PoCFG)

A polyomino context-free grammar (PoCFG) G is a tuple G = (N,T, n1,R)
where N is a finite set of non-terminal symbols, T is a finite set of terminal
symbols, with N ∩ T = ∅, n1 ∈ N is the starting symbol (or axiom), and R
is a finite set of production rules. A production rule is a pair composed of a
non-terminal symbol (the left-hand-side of the rule) and a referenced polyomino
defined over the alphabet N ∪ T (the right-hand-side).

Similarly to the case of CFGs for strings, we represent a PoCFG with a
compact notation which resembles the Backus-Naur form (BNF). In BNF rules
are grouped together by their non-terminal symbol and the first rule is the one
for the starting symbol n1. Figure 2 shows an example of five PoCFGs in BNF
(the ones used in our experiments).

As for the case of CFGs for strings, a PoCFG G = (N,T, n1,R) is a compact
way for defining a (possibly infinite) set of polyominoes defined over T ; we denote
by PG ⊆ PT the set of polyominoes defined by G. In the next section, we describe
a constructive process that allows to obtain one p ∈ PG . Note that the problem
of deciding whether a given polyomino p belongs to PG is beyond the scope of
this paper—for CFGs that meet some requirements, this problem is solvable for
the case of strings [32].

2.3 PoCFG-based development algorithm

We propose a development algorithm for obtaining a polyomino p ∈ PG for a
PoCFG G. We call it development algorithm because it iteratively modifies a
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polyomino by either adding new cells or modifying existing ones according to
the production rules of G and starting from a single cell polyomino given by the
axiom—from this point of view, it resembles a developmental process.

Design principles. Since the eventual usage of this algorithm is within the
process of the evolutionary optimization over PG , we designed it to receive as
input a source of information that is used for choosing which production rules
to apply. Consistently with the intended usage, we call this input the genotype
g. The development algorithm hence maps a genotype g to a polyomino p.

We designed our algorithm to be largely agnostic to the kind of genotype
being fed as input, i.e., to G ∋ g. We achieved this goal by making the algorithm
modular, i.e., by decoupling the part where a suitable production rule is cho-
sen using g from the rest of the algorithm, namely from the part in which the
chosen rule is used and the part in which suitable rules are identified. Indeed,
in Section 3.2 we experimentally compare realizations of the development algo-
rithm where the genotype is a bit- or an integer-string or a more complex data
structure.

Working. Algorithm 1 presents our development algorithm in the form of pseu-
docode. It takes as input the genotype g ∈ G and the PoCFG G and, as parame-
ters, a sorting criterion c and an overwriting flag o; it returns either a polyomino
p ∈ PG or ∅ if it is not possible to develop a polyomino with the given inputs
and parameters.

The algorithm works as follows. First, it sets (line 2) p to the one-cell poly-
omino with the only cell being labeled with the axiom n1. Then, it iteratively
modifies p according to these steps: (i) it finds (line 5) all the cells in p that
are labeled with a non-terminal symbols in N , i.e., those which can be replaced
according to a rule in R; (ii) it chooses (line 9) one cell (x⋆, y⋆) to be the target
of the replacement using the sorting criterion c; (iii) it chooses (line 11), based
on the genotype g and the state s (initialized to ∅, see Section 2.3), one rule
to apply among the ones suitable for the cell at (x⋆, y⋆); (iv) finally, if possible,
it performs (line 18) the replacement in p according to the chosen rule. The
last step, i.e., the actual modification of p, consists in “putting” the referenced
polyomino p′ “over” p with the reference cell of p′ placed at (x⋆, y⋆) in p. The it-
erations stop if (a) no more cells labeled with a non-terminal symbol are present
in the polyomino or (b) some of the steps cannot be performed (see below).

Step (ii) above (first() in Algorithm 1) corresponds in selecting one non-
terminal cell to be the target of the replacement—in general, there can be more
than one non-terminal cell in the polyomino being developed at some point of
the mapping. The way this choice is made is important because it can impact
on whether other steps fail, due to production rules not being applicable (see
below for those conditions). We cast the problem of choosing one cell as a sort-
ing problem and we explore three sorting criteria, according to which we select
(a) (Position criterion) the non-terminal cell with the lowest y-coordinate in p
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Algorithm 1 Algorithm to generate a polyomino p ∈ PG∪{∅} from a genotype
g ∈ G using a PoCFG G, a sorting criterion c, and an overwriting flag o.

1: function develop(g,G; c, o)
2: p ← single(startingSymbol(G)) ▷ init with starting symbol
3: s ← ∅
4: while true do
5: {(xi, yi)}i ← nonTerminalCells(p)
6: if |{(xi, yi)}i| = 0 then ▷ no non terminal cells
7: break
8: end if
9: (x⋆, y⋆) ← first(R; c) ▷ find cell to be replaced
10: Rn ← optionsFor(px⋆,y⋆ ,G) ▷ find replacing ref. pol. for px⋆,y⋆ ∈ N in G
11: (p′, s) ← choose(Rn, g, s) ▷ choose one replacing referenced polyomino
12: if p′ = ∅ then ▷ no chosen replacing polyomino
13: return ∅
14: end if
15: if ¬o ∧ ¬fits(p′, p, x⋆, y⋆) then ▷ cannot replace p with p′ at x⋆, y⋆

16: return ∅
17: end if
18: p ←replace(p, p′, x⋆, y⋆)
19: end while
20: return p
21: end function

and, in case of, tie, the one with the lowest x-coordinate; or (b) (Recency cri-
terion) the one which has been inserted in p most recently (i.e., at the most
recent iteration of the algorithm) and, in case of tie, the one selected with the
Position criterion; or (c) (free Sides criterion) the one which has most free sides,
i.e., sides on which there are no other cells, and, in case of tie, the one selected
with the Position criterion. In Algorithm 1, the parameter c represents the sort-
ing criterion determining the behavior of first(). In Section 3.1 we compare
experimentally the variants of the algorithm obtained with different criteria.

Step (iii) is the one where a production rule among the suitable ones for the
target cell is chosen based on the genotype, through the choose() function. We
describe three alternatives for this function in Section 2.3.

No-mapping conditions. There are two conditions according to which the devel-
opment algorithm returns ∅, i.e., fails in mapping a genotype g to a polyomino
p ∈ PG . First, if it is not possible to choose a rule for a given replaceable cell,
given a genotype g, i.e., if choose(Rr, g) returns ∅: this condition usually (see
next section) corresponds to the case where g has been completely consumed.
We introduced this possibility as a mechanism for avoiding endless execution
of the iterative part of the development algorithm—similar mechanisms indeed
exist in most of the variants of GE, such as structured grammatical evolution
(SGE) [16] and weighted hierarchical grammatical evolution (WHGE) [2].
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Second, if the chosen cell at (x⋆, y⋆) of p is not replaceable using the refer-
enced polyomino p′ constituting the right-hand-side of the chosen rule, then the
mapping fails. A cell (x⋆, y⋆) of p is not replaceable with p′ if some cells of p
close to the cell are not empty and should be replaced by a corresponding cell
in p′. We remark that this condition is peculiar of the case of polyominoes and
does not have a counterpart in plain strings, differently from the previous one. In
facts, while in the case of strings one can replace a single symbol with a sequence
of symbols simply by “enlarging” the gap between the leading and trailing (with
respect to the symbol being replaced) substrings, this accommodation is not
possible in 2-D. In Algorithm 1, this condition is verified by fits().

In this work, we also explore a variant of the development algorithm in which
a rule is always applicable, that is, a referenced polyomino p′ can always be
placed at a given (x⋆, y⋆), regardless of the fact that close cells are empty. In
other words, in this variant we allow for overwriting while applying production
rules—in Algorithm 1, the Boolean parameter o represents an overwriting flag.

Different representations. We designed our development algorithm to ac-
commodate different representations, i.e., different domains G for the genotype
g ∈ G. Our rationale is twofold. First, we wanted to show that the algorithms
is general, thanks to the decoupling of the choice of the production rule and the
rest of the process. Second, we wanted to build on previous research and prac-
tice on the similar case of grammar-guided genetic programming (G3P), where
different kinds of genotype (and different ways of using it) have been proposed
to improve the general effectiveness of the evolutionary search, e.g., bit-strings
in the early GE and WHGE, structured strings of integers in SGE.

We considered four representations; thanks to the modular nature of the
algorithm, they correspond to four implementations of the choose() function of
Algorithm 1. In all cases, we assume that the procedure for choosing a production
rule given the genotype is stateful, that is, that subsequent invocations with the
same g may give different outputs. We formalize this assumption by including
a state s as argument for choose() and by making the function return a new
state s, along with the chosen reference polyomino p′. We remark that the state
is initialized to an empty state ∅ at every new execution of the development
algorithm. The domain of the state depends on the representation.

Figure 1 shows an example of the execution of the development algorithm
with three of the four representations described in detail below.

String of integers. In this representation, a genotype g is an l-long string of inte-
gers, i.e., G = {1, . . . , b}l ⊆ Nl, and the state s is a integer, i.e., S = {1, . . . , l} ∈
N, used as a counter.

Given a genotype g = (g1, . . . , gl), the production rules Rn = (r1, . . . , rk)
for the non-terminal n (where each rj is a pair (n, pj), with pj a referenced
polyomino defined over N ∪ T ), and the state s, the function choose() for this
representation works as follows. Concerning the state, if s is ∅, s becomes 1,
otherwise s becomes s + 1. Concerning the output reference polyomino p′, if
s > l, p′ = ∅, otherwise p′ = pj , with j = ((gs − 1) mod k) + 1.
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g = (

(l=8)︷ ︸︸ ︷
2, 8, 6, 1, 5, 3, 6, 7)

p s gs k j p′

1 2 5 2
2 8 5 3
3 6 5 1
4 1 5 1
5 5 3 2
6 3 3 3
7 6 5 1
8 7 3 1
9

(a) With ints(8, 8)

g =

(l=32)︷ ︸︸ ︷
0111000100 . . . 11

p s h g′ z k j p′

1 3 011 3 5 4
4 3 100 5 5 1
7 2 01 1 3 2
9 3 001 1 5 2
12 3 000 0 5 1
15 2 11 3 3 1
17 3 101 5 5 1
20 2 11 3 3 2
22

(b) With bits(32)

g = (

(l1=73)︷ ︸︸ ︷
5, 2, 5, 1, . . .,

(l2=9)︷ ︸︸ ︷
3, 2, 3, . . .)

p s i j p′

(1, 1) 1 5
(2, 1) 1 2
(3, 1) 1 5
(4, 1) 1 1
(4, 2) 2 3
(5, 2) 1 1
(5, 3) 2 2
(6, 3) 1 1
(6, 4) 2 3
(7, 4) 1 1
(7, 5) 2 2
(7, 6)

(c) With structured(82, 2)

Fig. 1: Example of the development of a polyomino with the grammar of Fig-
ure 2b and three representations (one table for each representation). Each row
in the table represents one iteration of the algorithm (with the Position sorting
criterion and no overwriting). The thick black border denotes in p the cell that
is being replaced and in p′ the reference cell.

Intuitively, here choose() consumes the genotype one integer at once and
chooses the rule using the mod rule, as in the original GE.

We denote this representation with ints(l, b), b being the maximum value
each genotype element may assume and l being the genotype length. That is, l
and b are parameters for this parametric representation.

String of bits. In this representation, G = {0, 1}l and S = {1, . . . , l} ∈ N.
Given g = (g1, . . . , gl), Rn, and s, choose() works as follows. Concern-

ing the state, if s is ∅, s becomes 1, otherwise s becomes s + h, with h =
⌈log2 |Rn|⌉. Concerning p′, if s+ h > l, p′ = ∅, otherwise it (i) takes the h bits
g′ = (gs, gs+1, . . . , gs+h) in g, (ii) converts them to an integer z ∈ {1, . . . , 2h},
then (iii) returns p′ = pj , with j = (z mod k) + 1.

Intuitively, here choose() consumes the genotype h bits at once, with h the
smallest possible to accommodate Rn (possibly not-consuming bits if |Rn| = 1),
and chooses the rule using the mod rule on the bit-to-integer conversion of the
consumed h bits.

We denote this representation with bits(l).

String of reals. In this representation, G = Rl and S = {1, . . . , l} ∈ N.
Given g = (g1, . . . , gl), Rr, and s, choose() works as follows. Concerning

the state, it works as ints(n, l). Concerning p′, if s > l, p′ = ∅, otherwise it
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(i) clamps down gs in [0, 1], as h = min(1,max(0, gs)), then (ii) returns p′ = pj ,
with j = max(1, ⌈kgs⌉).

Intuitively, here choose() consumes the genotype one real value at once and
chooses the rule based on the value clamped in [0, 1] and mapped to {1, . . . , |Rn}.

We denote this representation with reals(l).

Structured string of integers. In this representation, a genotype is a set of strings
of integers, one string for each non-terminal in the grammar, and the state is
a set of counters, one for each non-terminal. Let N = {n1, . . . , nm} be the
set of non-terminals and let Rnj ⊆ R be the set of production rules for the
non-terminal nj . Formally, G = {1, . . . , |Rn1 |}l1 × · · · × {1, . . . , |Rnm |}lm and

S = {1, . . . , l1} × · · · × {1, . . . , lm}, with
∑j=m

j=1 lj = l.
We determine the number lj of genotype elements for the j-th non-terminal

of the grammar, based on the overall genotype length l, as follows. (i) We start
from a bag N = {n1} of non-terminal symbols containing the axiom only. (ii) We
repeat for nrec times this procedure: for each element n of N , we consider all
the rules Rn for n, we take all the referenced polyominoes appearing on the
right-hand-side, and we add toN all the non-terminal symbols appearing in them
(possibly multiple times). (iii) Finally, based on the content of N , we reserve to
each non-terminal n a proportion of genotype elements based on the amount of

n items in N , namely, for nj we set lj =
⌊
l
|{n∈N :n=nj}|

|N|

⌋
(reasonably adjusted

to have
∑j=m

j=1 lj = l). The rationale of this procedure is to have a number of
genotype elements suitable for performing “enough” productions with each given
non-terminal, while still constraining the genotype to be l-long. The parameter
nrec determines how much non-terminals that are, intuitively, more recursive in
the grammar take more space in the genotype.

Given g = (g1,1, . . . , g1,l1 , . . . , gm,1, . . . , gm,lm), the rulesRni
for a non-terminal

ni, and s = (s1, . . . , sm) (or s = ∅), choose() for this representation works as
follows. Concerning the state, if s = ∅, then s becomes (1, . . . , 1) (i.e., a m-long
vector of ones); otherwise, if s = (s1, . . . , sm), then si = si +1. Concerning p′, if
si > li, p

′ = ∅, otherwise p′ = pj , with j = gi,si .
Intuitively, here choose() consumes the genotype one integer value at once

in the portion of the genotype corresponding to the non-terminal being replaced
and chooses the rule based on the “current” genotype element. Note that the
mod rule here is not needed, since the domain of each genotype part exactly
matches the number of rules for the corresponding non-terminal symbol.

We denote this representation with structured(l, nrec).

2.4 Evolution of polyominoes

Having defined a way to map a genotype g ∈ G to a polyomino p ∈ PG for a
grammar G, we can solve problems of optimization over PG using evolutionary
computation (EC), that is, with an EA. Since we defined mapping variants
for different kinds of genotype, we might use any EA that is suitable for the
corresponding G, e.g., evolutionary strategy (ES) [9], or maybe the more recent
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OpenAI-ES [33], for the reals(l) representation and a genetic algorithm (GA) for
bits(l), possibly including a linkage-exploitation mechanism [36] as done in [20].
However, for simplicity, in this work we experiment with a single EA, described
below, and we leave the investigation of other EAs as future work.

Given a fitness function f : PG → R (we assume to tackle minimization
problems, without loss of generality), we evolve polyominoes with a simple EA
with two variation operators (mutation and crossover, each being representation-
specific), tournament selection for parents selection, and overlapping between
parents and offspring. In detail, we first initialize (with a representation-specific
procedure) a population P of npop individuals. Then, we repeat ngen times the
following steps: (i) we generate rx-overnpop new individuals with crossover, i.e.,
each one by selecting two parents from P with tournament selection (with ntour

size) and applying them a crossover operator; (ii) we generate (1 − rx-over)npop

new individuals with mutation, selecting the parent with tournament selection;
(iii) we merge all newly generated individuals to the parents, hence obtaining a
population P with 2npop individuals; (iv) we trim P with truncation selection,
retaining the best npop individuals according to the fitness function f . At the
end, we return the individual, i.e., the polyomino, with the lowest fitness.

Concerning the representation-specific initialization procedure, we simply
generate each genotype g by sampling each one of its element in the proper
domain with uniform probability, i.e., in {1, . . . , b} for ints(l, b), in {0, 1} for
bits(l), in [0, 1] for reals(l), and {1, . . . , |Rni

|} (with the appropriate value for i)
for structured(l, nrec).

Concerning the mutation operator, we use the point-mutation, that randomly
changes each genotype element to another value in the proper domain with pmut

probability, for ints(l, b), bits(l), and structured(l, nrec). For reals(l) we use the
Gaussian mutation with σmut.

Finally, concerning the crossover operator, we use the uniform crossover,
that takes each element in the child genotype from one of the parents with equal
probability, for all the representations.

3 Experiments and results

We performed some experiments to: (a) compare the different variants of the
development algorithm (i.e., sorting criterion and overwriting flag), (b) com-
pare the different representations, (c) verify if our approach actually allows to
evolve polyominoes towards a predefined target shape while adhering to the
given grammar. Concerning the representations, we experimented with bits(l),
ints(l, 4), ints(l, 16), reals(l), and structured(l, 2), with different values for the
genotype length l.

When comparing variants and representation, we focused on analyzing quan-
titatively some properties of the representation, since they allow to characterize
how the search process will work [19, 30]. Namely, we consider the following
quantitative properties, which we measured experimentally:
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Validity It measures the degree to which a genotype is mapped to a valid
phenotype. Given a set G of genotypes, we obtained the corresponding bag P
of phenotypes by applying our development algorithm and then we computed
the validity as 1

|G| |{p ∈ P : p ̸= ∅}|.
Uniqueness It measures the degree to which different genotypes are mapped

to different phenotypes. Given a set G of genotypes and the corresponding

bag P of phenotypes, we computed the uniqueness as |G|
|P ′| , with P ′ being the

set of elements of P different than ∅, i.e., the valid phenotypes. Note that
P may contain duplicates, while P ′ does not, being a set.

Locality It measures the degree to which similar genotypes are mapped to sim-
ilar phenotypes. Given a sequence G of unique genotypes, the corresponding
sequence P of phenotypes, and two distances dG and dP defined for genotypes
and phenotypes, we computed the distance matrices DG and DP containing
the distances between all pairs of elements of the two sequences and then we
computed the locality as the Pearson correlation between the corresponding
elements of the matrices. As dP we used the Hamming distance of pair of
polyominoes after having translated them in order to have coincident cen-
ters of mass. As dG we used Hamming distance for bits(l), ints(l, b), and
structured(l, 2), Euclidean distance for reals(l).

For all the properties, the greater, the better.

We performed our experiments with five PoCFGs, shown in Figure 2. They
differ in the number |R| of rules, the number |T | of terminals, and the number
|N | of non-terminals.

::= | |
(a) Monodirectional

::= | | | |
::= | |
(b) Bidirectional

::= | |
(c) Alternated

::= | |
::= |
::= |

::= |
::= | | | |

| | |
(d) Worm

::= | |
::=

::= | |
::= |
::= |

(e) Dog

Fig. 2: The PoCFGs considered in the experiments. Half colored squares rep-
resent non-terminal symbols; fully colored squares represent terminal symbols;
on the right-hand-side, a thick black border denotes the reference cell in a ref-
erenced polyomino. E.g., for the Dog grammar, N = { , , , , }, T = { , , },
n1 = , and there are |R| = 11 production rules.
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3.1 Comparison of development variants

For comparing the six variants of our development algorithm obtained by com-
bining the three sorting criteria and the two values for the overwriting flags, we
used the bits(l) representation, with l ∈ {10, 15, . . . , 245, 250}. We performed
similar experiments also for the other representations, observing qualitatively
similar findings. For measuring the properties, for each l value we generated
5000 genotypes (and the corresponding phenotypes) for validity and uniqueness
and 1000 genotypes for the locality. Figure 3 presents the results of this experi-
ment.
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Fig. 3: Representation properties (rows of plots) for the six variants of the de-
velopment algorithm (line colors and types) measured on the five grammars
(columns of plots) with the bits(l) representation.

We first observe that differences in terms of properties are more apparent be-
tween PoCFGs (columns of plots) than between variants of the algorithm (line
colors). That is, the grammar plays a key role in determining the properties of
the representation. This finding is consistent with the literature of G3P algo-
rithms, which has shown that grammar design can greatly impact the behavior
of the algorithm [10, 17, 24]. On the other hand, it shows that our development
algorithm is robust with respect to its parameters.

By looking at the plots related to validity (first row), it is possible to see that
overwriting results, in general, in a larger number of valid polyominoes. With
all the grammars, except for the Bidirectional, the validity reaches its maximum
for most of the combinations with overwriting and a large enough l. The reason
why Bidirectional leads to lower validity, might be related to the fact that there
is a higher chance of selecting a non-terminal than a terminal, when comparing
to the other grammars.

Concerning uniqueness, Figure 3 suggests that the Sides criterion tends to re-
sult in lower uniqueness and Recency in greater uniqueness. No clear and general
distinctions can be made between the variants with and without overwriting.
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Finally, concerning the locality, the results suggest that there are no differ-
ences among the variants. The main role is played by l: the longer the genotype,
the lower the locality. This finding can be explained by the fact that long geno-
types might not be used completely in the mapping process: the differences in
unused parts of two genotypes would not be reflected in the corresponding phe-
notypes. This interplay between locality and actual usage of the genotype has
already been observed in previous works and can be spotted with the help of
visualization tools [23].

Based on the results of this experiment, we decided to use the Recency cri-
terion without overwriting. Specifically, we selected the latter parameter value
due to its closer alignment with the function of a grammar, namely, describing
structural constraints for polyominoes.

3.2 Comparison of representations

We compared the five representations with the same procedure of the previous
experiment (and with the Recency criterion without overwriting). The results
are depicted in Figure 4.
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Fig. 4: Representation properties (rows of plots) for the five representations (line
color) measured on the five grammars (columns of plots) with the development
algorithm based on Recency without overwriting.

As in the previous analysis, the results shows that the grammar and the geno-
type length l impact more on the representation properties than the represen-
tation itself. However, representations differ more than development algorithm
variants.

The bits(l) and ints(l, 4) representations are in general better in terms of
validity. structured(l, 2) generates more invalid polyominoes than the other rep-
resentations, likely because some portions of the genotype are not long enough—
related to the nrec parameter. However, larger validity does not always mean
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more unique phenotypes: in all the grammars except the Bidirectional and the
Dog grammar, the structured(l, 2) representation presents higher uniqueness.

Concerning locality, structured(l, 2) and reals(l) score, in general, better. All
representations present a similar trend, except bits(l), which presents a smoother
line (with, however, low locality).

Although in EAs a higher locality is important, we chose to perform the
subsequent experiments with the bits(l) representation, as it is the simplest one
and the most similar to the original GE.

3.3 Evolution of polyominoes

The last analysis consists in the evolution of polyominoes, as we wanted to show
that the algorithm proposed can be used inside an EA to solve optimization
problems. We evolved the polyominoes using the EA described in Section 2.4
with the following parameters: npop = 100, ngen = 200, rx-over = 0.8, ntour = 3,
pmut = 0.01, the latter being the only representation-specific parameter. We
employed the bits(500) representation with the Recency criterion and no over-
writing. We used JGEA [22] for the experiments.

We built an optimization problem where the goal is to evolve a target poly-
omino p⋆. We used, as fitness function, the average of the Hamming distance
of the evaluated polyomino p to the target p⋆ and the same distance computed
without considering labels; in both cases, we translated the polyominoes in order
to have their centers of mass to coincide. We employed this function, namely,
also the part disregarding the labels, to facilitate the evolution of the correct
shape.

We considered five target polyominoes, shown in Figure 5, and used each of
the five PoCFGs on each target polyomino. We purposely chose target polyomi-
noes which match very differently the five PoCFGs. Note that the Dog shape is
not perfectly achievable with the Dog grammar, due to the misplaced rightmost
foot.

(a) Chess (b) Circle (c) Worm-1 (d) Worm-2 (e) Dog

Fig. 5: The five target polyominoes.

For each of the 25 combinations of grammar and target, we performed 50
evolutionary runs by varying the random seed. Figure 6 presents the results of
these experiments: it shows the fitness of the best polyomino during the evolution
and its size, i.e., number of cells.

By looking at the results, it is possible to see that the EA successfully identi-
fied the optimal solutions for the Worm-1 and Worm-2 by employing the Worm
grammar. Similarly, the Dog grammar greatly outperformed the other gram-
mars in solving the Dog problem. This observation highlights the significance of
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Fig. 6: Fitness and size (row of plots) of the best polyomino during the evolution
for the five problems (column of plots) using the five grammars (color line)
with the development algorithm based on Recency without overwriting and the
bits(500) representation. The shaded area corresponds to the interquartile range,
the line to the median across 50 runs.

a well-designed grammar, not only to specify structural constraints, but also to
incorporate domain-specific knowledge about the problem.

When employing a grammar not specifically designed for the problem at
hand, such as the Alternated grammar for Circle, Worm-1, Worm-2, and Dog
problems, the EA seems to become trapped in local minima after a few iterations.
This is indicated by the size of the fittest individual, which remains unchanged,
highlighting the EA difficulty to explore the solution space effectively under these
circumstances.

All to all, these experiments show that it is possible to evolve a polyomino
towards a specific target while keeping it satisfying some predefined constraints,
encoded in a user defined PoCFG.

4 Conclusions

This work introduces the concept of PoCFGs and a novel approach to gener-
ate polyominoes that meet predetermined requirements, defined by a PoCFG.
The experimental results align with existing literature of G3P algorithms, high-
lighting the importance of grammar design [10, 17, 24], as differences in terms
of representation properties are more apparent between PoCFG, than between
variants of the algorithm. Additionally, we show the adaptability and potential
of our approach by integrating the algorithm within EA to evolve polyominoes
towards a specific target while satisfying some predefined constraints encoded in
a designed PoCFG.

Future work aims to explore the applicability of the algorithm by evolving
polyominoes in more complex problems, such as the generation and evolution of
modular robots [28], maps for games [11], or DNA shapes [34].
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