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Abstract. This work proposes Adaptive Facilitated Mutation, a self-
adaptive mutation method for Structured Grammatical Evolution (SGE),
biologically inspired by the theory of facilitated variation. In SGE, the
genotype of individuals contains a list for each non-terminal of the gram-
mar that defines the search space. In our proposed mutation, each in-
dividual contains an array with a different, self-adaptive mutation rate
for each non-terminal. We also propose Function Grouped Grammars, a
grammar design procedure to enhance the benefits of the propose muta-
tion. Experiments were conducted on three symbolic regression bench-
marks using Probabilistic Structured Grammatical Evolution (PSGE),
a variant of SGE. Results show our approach is similar or better when
compared with the standard grammar and mutation.

Keywords: Adaptive Mutation · Grammar-design · Grammar-based
Genetic Programming.

1 Introduction

Grammar-based Genetic Programming (GP) algorithms have been an impor-
tant tool for the evolution of computer programs since their inception [1,2,3].
The most popular approach is Grammatical Evolution (GE) which is notable
for decoupling the genotype and the phenotype, using a grammar to translate
a data structure into an executable program. The representation and variation
operators used by GE present some known issues, such as low locality and high
redundancy. The first means that small changes in the genotype can cause signif-
icant changes in the phenotype, and the second means that most modifications
do not affect the phenotype. These characteristics result in a bad trade between
exploration and exploitation, which makes the algorithm perform similarly to
random search [4].

Structured Grammatical Evolution (SGE) [5] is a variant of GE that uses a
different representation for the individuals. The genotype comprises several lists,
one for each non-terminal in the grammar, and each list contains the indexes of
the rules to be expanded. SGE shows better performance when compared to GE,
and other grammar-based approaches [6], but also improved locality and lower
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redundancy when compared to standard GE [7,8], in part due to its operators.
This representation allows the recombination operator to be grammar-aware,
preserving the list of each non-terminal. On the other hand, the grammar does
not inform the mutation operator. Mutation in SGE changes the production
rule of the non-terminal selected to mutate. This operator affects all genes with
the same frequency, regardless of grammatical context. Using a static and equal
value for all non-terminals fails to consider that not all mutations are equally
destructive.

Specific genes can play an essential role in the solution and, when mutated,
may completely ruin the phenotype behavior. On the other hand, some genes
may have a tuning role; in this case, a mutation will only result in a minor
adjustment to the solution. Despite these differences, both types of genes are
equal in the eyes of mutation. Biological processes have evolved to prevent this
phenomenon. Gerhart et al. [9] propose that there are core components vital to
the individual which remain unchanged for long periods and regulatory genes
that combine existing core components and change frequently. The result is a
system that can quickly adapt to new environments through regulatory changes
while preserving the core components that ensure individuals are functional. We
can replicate this behavior in grammar-based algorithms using different adaptive
mutation probabilities for each non-terminal. This approach enables the system
to autonomously regulate mutation rates to match the impact of changes to
that non-terminal. Note that this solution is only as effective as the correlation
between non-terminals and mutation impact. It follows that the effectiveness of
this mutation is related to grammar-design [10,11,12,13], as grammars with more
rules enable finer tuning of mutation probabilities. The grouping of productions
within each non-terminal is also relevant; separating low and high impact changes
into separate rules should improve performance.

In this work, we propose Adaptive Facilitated Mutation, a biologically in-
spired grammar-aware self-adaptive mutation operator for SGE and its variants.
Furthermore, we propose ”Function Grouped Grammars”, a method for gram-
mar design that empirically outperforms grammars commonly used for regression
in GE. We compare our approach to standard grammar and mutation and find
that, when combined, Function Grouped Grammars and Adaptive Facilitated
Mutation are statistically superior or similar to the baseline in three relevant
GP benchmarks.

The remainder of this work is structured as follows: First, section 2 presents
the background necessary to understand the work presented. Section 3 presents
the proposed mutation and grammar-design method. Section 4 details the ex-
perimentation setup used, and Section 5 the experimental results regarding per-
formance and analysis of probabilities. Section 6 gathers the main conclusions
and provides insights regarding future work.

2 Background

Evolutionary Algorithms (EAs) are optimization algorithms inspired by the bi-
ological processes of natural evolution. A population of individuals (candidate
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solutions) evolves over several generations, guided by a fitness function. Similar
to nature, these individuals are subject to selection, reproduction, and genetic
variation. These algorithms face known issues such as parameter tuning, pre-
mature convergence, and lack of diversity. Researchers propose novel represen-
tations [14,5,15], selection methods, genetic operators, and parameter selection
approaches to address these issues.

2.1 Grammar-based Genetic Programming

GP is an EA that evolves solutions as programs. Over the years, researchers
have proposed many variants of GP, and grammar-based approaches gained
more popularity as grammars are helpful to set restrictions to the search space
[3].

GE [14] is the most popular grammar-based GP methods. The individuals’
genotype is a string/vector of integers that is translated into a phenotype (an
executable function) through a grammar. The individuals are subject to selection
mechanisms, mutation, and crossover in each generation.

This approach is relevant but suffers from high redundancy [16], and poor
locality [17], damaging the efficiency of evolution. Redundancy is measured by
analyzing the proportion of effective mutations, and locality studies how well
genotypic neighbors correspond to phenotypic neighbors. Standard GE showed
performance similar to random search [4], which motivated researchers to pro-
pose different initialization methods [18], representations [5,15], genetic opera-
tors, but also to investigate grammar design [10].

Position Independent Grammatical Evolution (πGE) [19] uses a different
representation and mapping mechanism that removes the positional dependency
that exists in GE. Each codon of the genotype contains two values, nont that
consists of the non-terminal and rule that states the rule index to expand. This
method improves performance compared with GE [20]. However, another study
found that this method also suffers from poor locality [7].

SGE [8,5] proposed a new representation for the genotype and variation op-
erators, which resulted in better performance and fewer issues regarding locality
and redundancy [6,7]. The genotype comprises a list of integers (one per gram-
mar non-terminal), with each integer corresponding to the index of a production
rule. This structure allows mutation to occur inside the same non-terminal and
crossover to exchange the list of derivation options. Another advantage of this
proposal is that only valid solutions are allowed. SGE imposes a depth limit on
solutions. Once the limit is surpassed, only non-recursive productions are chosen,
forcing individuals to consolidate into a valid genotype.

Probabilistic Structured Grammatical Evolution (PSGE) [15] is a recent pro-
posal to SGE that uses a probabilistic grammar, namely a Probabilistic Context-
Free Grammar (PCFG), to bias the search, and where codons of the genotype
are floats. Each grammar production rule has a probability of being selected.
These probabilities change based on the frequency of expansion of that rule on
the best individual. If the rule is not expanded, the probability decreases. This
proposal performed better or similarly compared to SGE and outperformed GE
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in all problems. The evolved grammar also provides information about the fea-
tures more relevant to the problem [21]. Another probabilistic grammar approach
is Co-evolutionary Probabilistic Structured Grammatical Evolution (Co-PSGE)
[22]. In this method, each individual has a PCFG, which may suffer mutation to
the probabilities values. This approach also showed similar or better performance
than SGE.

2.2 Adaptive mutation rate

Although most works in the literature use a static parameter for mutation and
crossover rates, research shows that dynamic parameters may improve the search
and introduce more diversity to the population. Adaptive mutations have been
widely proposed in the literature to tackle some of the issues that EAs present.

Self-adaptive Gaussian mutation has been widely used by Evolution Strate-
gies (ES) [23] and adapted into EAs [24]. During the evolutionary process, the
mutation rate varies, suffering a Gaussian mutation. This approach achieves bet-
ter results than standard mutation and performs similarly to ES. Teo [25] studied
a self-adaptive Gaussian mutation operator for the Generalized Generation Gap
(G3) algorithm, and it outperformed the standard algorithm in two of the four
problems tested.

Other approaches consider individuals’ fitness when adapting the mutation
probability. Libelli et al. [26] and Lis [27] approaches showed better performance
than classical Genetic Algorithm (GA).

Adaptive Mutation Probability Genetic Algorithm (APmGA) [28] dynam-
ically adjusts the mutation probability during the evolutionary process based
on the variations of the population entropy between the current and previous
generations.

Salinas et al. [29] proposed an EA where operators are GP trees. In each
generation, the probability of an operator increases or decreases based on the
individual’s performance after the operator.

Gomez proposed Hybrid Adaptive Evolutionary Algorithm (HAEA) [30] to
adapt the operator probabilities during evolution. Each individual encodes its
genetic rates. The probabilities by a random value can change according to
the fitness of the offspring. This algorithm inspired other proposals that showed
that although for some problems there are no significant improvements in perfor-
mance, the algorithm can obtain similar results without the need to pre-tuning,
needing less computational time [31,32,33].

Coelho et al. [34] presented a new hybrid self-adaptive algorithm based on
ES guided by neighborhood structures and tested for combinatorial contains
mutation probabilities, and the second contains integer values that control the
strength of the disturbance. The results were similar to the other approaches
tested and showed that the adaptive mutation could escape local optima and
balance exploration and exploitation.

To our knowledge, there is only one adaptive mutation rate parameter pro-
posal in GE. Fagan et al. [35] propose Fitness Reactive Mutation (FRM), an
adaptive mutation that increases the mutation rate in case a fitness plateau is
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reached to diversify the population and decreases when a new optimum is found,
using increments/decrements of 0.01. The approach found similar results as the
fixing mutation rate.

2.3 Grammar-design

It is possible to design grammar to produce syntactically constrained solutions
or to incorporate domain knowledge by biasing the grammar. The grammar’s
design can significantly impact the search of GE [11,12,13].

Miguel Nicolau [11] proposes a method to reduce the number of non-terminals
of the grammar. The authors compare standard GE with a standard and a
reduced grammar and showed an empirical increase in performance. This work
motivated a study with different types of grammars. This study shows that
recursion-balanced grammar could also improve performance [10].

A recent work by Dick et al. [12] showed that GE is more sensitive to gram-
mar design than Context-Free Grammar Genetic Programming (CFG-GP). The
results suggest that CFG-GP is more sensitive to parameter tuning than gram-
mar design.

Hemberg et al. [13] compared GEs with a depth-first mapping mechanism
that uses three grammars: infix (standard GE), prefix and postfix. The results
showed that different grammars can improve performance, although the authors
report no significant differences.

Grammatical Evolution by Grammatical Evolution ((GE)2) uses two gram-
mars, the universal and the solution grammar. The universal grammar describes
the rules to construct the solution grammar. The rules are used to map the in-
dividuals and can evolve towards biasing the search space. Results showed that
the evolved grammars presented some bias towards some non-terminal symbols.

Manzoni et al. [36] showed theoretically that different grammars of equal
quality impact the performance of (1+1)-EA. The structure of the grammar is
problem dependent but can favor the search. A mutation operator that modifies
the probability of selecting the grammar rules was also proposed.

3 Adaptive Facilitated Mutation

In biology, organisms have evolved to canalize the rate and effect of mutations on
the phenotype. Gerhart et al. [9] propose that organisms adapt to new environ-
ments through regulatory changes that enable or disable pre-existing conserved
components. This variation increases the probability of viable genetic mutation
since core components remain unaffected by these regulatory changes. In sum,
the modularity, adaptability, and compartmentation of genetic material in or-
ganisms allow facilitated variation through regulatory change.

Facilitated Mutation [37] (FM) is a biologically inspired mutation mecha-
nism that aims to replicate the benefits of facilitated variation. This mechanism
leverages the grammar’s inherent compartmentation to regulate the mutation’s
frequency and destructiveness. With this mutation, each non-terminal has a
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different mutation probability, rather than the single mutation probability tra-
ditionally used by grammar-based EA.

In this work, we propose Adaptive Facilitated Mutation (AFM), an extension
of FM using an adaptive mutation array that removes the need to set a mutation
probability for each non-terminal manually. Each individual carries a mutation
array containing these mutation probabilities, illustrated in Figure 1. For each
individual in the initial population, the mutation array is initialized using a
specified starting mutation probability.

<start>
<expr>

<pre_op>
<op>
<var>

10%

7%
5%

12%
11%
24%

SGE
Mutation

Probability 

Adaptive
Facilitated
Mutation

Grammar  
Non-Terminals

Example of individual

Genotype

<start>
<expr>

<pre_op>
<op>
<var>

[0]
[0, 3, 3]

[ ]
[2]

[1, 0]

Fig. 1: In SGE, all genes are mutated based on a single probability (pictured
left). Adaptive Facilitated Mutation uses a mutation array for each individual
containing a probability for each non-terminal (pictured right).

In each generation, all individual’s probabilities are adjusted using a ran-
dom value sampled from a Gaussian distribution with N(0, σ), where σ is a
configurable parameter. Figure 2 illustrates the evolution of the mutation array.

  Individual's mutation probability array

10%10% 10% 10% 10%

  Individual's mutation probability array

-2.57%
2.6%

3.11%
-1.13%
1.88%

Gaussian Pertubation
μ = 0

σ = 0.025

7.43%12.6% 13.11% 8.87% 11.88%

Fig. 2: Example of the first perturbation to the mutation probability array of
an individual. This array is subsequently updated using a value sampled from
a Gaussian distribution. This distribution is centered at 0 using a configurable
standard deviation σ.

AFM only complements mutation operators by refining the frequency and
impact of mutation. Once the mechanism determines which non-terminals to
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mutate, other operators should be used to alter the genotype within the defined
scope. During crossover, the offspring individual inherits the mutation array from
its fittest parent. More sophisticated inheritance mechanisms may improve this
approach further, but we opted for a simple strategy to validate the approach. In
this work, we use AFM for SGE and its variants, but this method is compatible
with any grammar-based GP algorithms where it is possible to tie each codon
to a corresponding non-terminal.

3.1 Grammar Design For Adaptive Facilitated Mutation

Since AFM leverages grammar structure, a purposefully designed grammar may
enhance the method’s performance. We hypothesize that AFM is more effective
in grammars with multiple non-terminals containing related symbols. Addition-
ally, a larger number of non-terminals may improve performance by enabling
finer turning of mutation probabilities through a more detailed mutation array.
Non-terminals commonly group symbols based on semantic similarity. For ex-
ample, a grammar may use a non-terminal for all operators with a single expan-
sion combining operators related to trigonometry (i.e., sin, cos) and the power
function (i.e., square, sqrt). These same symbols can be grouped into several
non-terminals based on function rather than semantics. Following this reasoning,
trigonometric operations would be grouped in a specific non-terminal and the
power function in a separate one. In Figure 3, we illustrate how a grammar can
be extended into a Function Grouped grammar.

<start> ::=<expr>

<expr> ::=<expr><op><expr> |
<pre op>(<expr>) |
<var>

<op> ::=+|−|∗|/
<pre op> ::=sin|cos|sqrt|square

<var> ::=1.0|x[n]

(a) Initial Grammar.

<start> ::=<expr var>

<expr var> ::=<expr>|<var>

<expr> ::=<expr var><op><expr var> |
<pre op>(<expr var>)

<op> ::=+|−|∗|/
<pre op> ::=<trig op>|<pow op>

<trig op> ::=sin|cos
<pow op> ::=sqrt|square

<var> ::=1.0|x[n]

(b) Function Grouped Grammar.

Fig. 3: A grammar of semantically grouped non-terminals (3a) can be re-
constructed based on functional groups (3b). This procedure extends the gram-
mar and possibly improves performance when using Adaptive Facilitated Muta-
tion.
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4 Experimental Setup

We use PSGE [15] in all experiments as it has equal or superior performance to
SGE in the selected tasks. We compare the algorithm using Standard Mutation
(SM) and Facilitated Mutation (FM). Additionally, we compare the Standard
Grammar (SG) and the Function Grouped Grammar (FG) that follows the prin-
ciples outlined in Section 3 (complete grammar shown in Figure 4).

We evaluate the performance of our method in three popular symbolic re-
gression GP benchmarks, the Quartic polynomial, the Pagie polynomial, and
Boston Housing [38,39]. The Quartic polynomial is defined by the mathematical
expression shown in Equation 1. The function is sampled in the interval [-1, 1]
with a step of 0.1.

x[0]4 + x[0]3 + x[0]2 + x[0] (1)

The Pagie polynomial is known to be a more difficult symbolic regression
benchmark (Equation 2. The outputs are computed in the interval:−5 ≤ x[0], x[1] ≤
5.4, with step size 0.4. In Pagie, both features fall in the same range of values.

1

1 + x[0]−4
+

1

1 + x[1]−4
(2)

<start> ::=<expr var>

<expr var> ::=<expr>|<var>

<expr> ::=<expr op>|
<pre op>(<expr var>)

<expr op> ::=<expr><op><expr> |
(<expr><op><expr>)

<op> ::=+|−|∗|/
<pre op> ::=<trig op>

|<exp log op>|inv
<trig op> ::=sin|cos

<exp log op> ::=exp|log
<var> ::=1.0|x[n]

Fig. 4: Function Grouped Grammar used in the experiments. Number x[n] ter-
minals change to match the problem: 1 for Quartic, 2 for Pagie, 12 for Boston
Housing

The third benchmark is Boston Housing [40]. This is a predictive modeling
problem, where one needs to build a model to predict the price of Boston houses
based on 13 features. There are 506 instances split into 90% for training and 10%
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for test. The 13 features that compose the dataset are heterogeneous regarding
their intervals, with ranges varying from 0 ≤ x[3] ≤ 1 to 0.32 ≤ x[11] ≤ 396.9.
This diversity likely reduces the effectiveness of our approach as all features
are grouped in the < var > non-terminal, making it difficult for the algorithm
to distinguish between different types of features with different mutation rates.
It is possible to adjust the grammar using expert knowledge, separating the
variables into non-terminals based on orders of magnitude or function. This
type of grammar design, while possibly effective, is outside the scope of this
work.

The fitness functions used to evaluate the individuals consider the mini-
mization of the Root Relative Squared Error (RRSE) between the individual’s
solution and the target on a data set.

Table 1 summarizes the parameters used in the experiments. All problems use
the same population size, mutation and crossover rates, tournament size, max
depth, and number of generations. In preliminary experimentation, we trialed
four parameters for the AFM’s Gaussian perturbation: σ = [0.001, 0.0025, 0.005, 0.01]
We found that facilitated mutations’ σ parameter benefited from tuning when
moved to different tasks. Consequently, each experiment uses the best σ value for
the corresponding problem. We repeat all experiments 100 times to investigate
statistically meaningful differences between the approaches.

Table 1: Parameters used in experiments for Quartic, Pagie, and Boston Housing.

Parameters Quartic Pagie
Boston
Housing

Population Size 1000

Generations 100

Elitism 10%

Mutation Gaussian N(0,0.5)

Mutation Probability 10%

Adaptive Facilitated Mutation σ 0.0025 0.001

Crossover Probability 90%

Tournament Size 3

Max Depth 10

5 Results

This section presents the results obtained for each problem in terms of the Mean
Best Fitness (MBF) of 100 repetitions. We statistically compare the different
approaches using the Mann-Whitney test with Bonferroni correction with a sig-
nificance level α = 0.05.

Figure 5 shows the results for the Quartic polynomial. At the end of evolution,
all approaches achieve a similar result in this problem, except for SM+SG, which
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0.5
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SE

SM+SG
SM+FG
AFM+SD
AFM+FG

Fig. 5: Plot shows the mean best fitness of 100 runs for the Quartic polynomial.

performs significantly worse than the others (see Table 2 for statistical analysis).
Quartic likely has a local optimum that evolution cannot escape without our
proposed mechanism. While SM+FG and AFM+SG statistically outperform
the baseline, AFM+FG’s advantages are only empirical. We hypothesize that
AFM+FG would join the other two methods with additional repetitions, creating
two tiers of solution quality in Quartic.

Table 2: P-value for Mann-Whitney Statistical Tests using Bonferroni correction
with significance level α = 0.05 for Quartic polynomial. Bold indicates that the
method in the corresponding row is statistically superior.

Quartic
polynomial

SM+SG SM+FG AFM+SG AFM+FG

SM+SG
SM+FG 0.048
AFM+SG 0.004 0.356
AFM+FG 0.072 0.760 0.332

Figure 6 shows the MBF for the Pagie polynomial across 100 generations.
Looking at the results, one can see that the advantages of the proposed ap-
proaches are clear for this problem, particularly the FG grammar. From gener-
ation 25 until termination, both AFM solutions have a better MBF than their
SM counterparts. While AFM is empirically superior to SM, FG amplifies the
benefits of this approach.

The statistical analysis results (shown in Table 3) reveal that AFM+FG out-
performs all SG approaches while SM+FG is similar. These results suggest that
our proposed grammar may be marginally superior, but considerable benefits
come from combining it with the appropriate mutation.
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Fig. 6: Plot shows the mean best fitness of 100 runs for the Pagie polynomial.

Table 3: P-value for Mann-Whitney Statistical Tests using Bonferroni correction
with significance level α = 0.05 for Pagie polynomial. Bold indicates that the
method in the corresponding row is statistically superior.

Pagie
polynomial

SM+SG SM+FG AFM+SG AFM+FG

SM+SG
SM+FG 0.965
AFM+SG 0.426 0.400
AFM+FG 0.002 0.001 0.001

0 20 40 60 80 100
GENERATIONS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

RR
SE

SM+SG
SM+FG
AFM+SD
AFM+FG

(a) Training

0 20 40 60 80 100
GENERATIONS

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

RR
SE

SM+SG
SM+FG
AFM+SD
AFM+FG

(b) Test

Fig. 7: Plot shows the mean best fitness of 100 runs for the Boston Housing
dataset.

Finally, in Figure 7 we show the MBF for the Boston Housing Training and
Test. A brief perusal of the results indicates that AFM+FG achieves the best
MBF in Test. When comparing the mutations, AFM generalizes better as it
maintains a similar performance between train and test.
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Note that SM+SG appears to be worst at generalizing to the test data. This
is most evident when comparing SM+SG with both AFM approaches, as the
differences between these methods are noticeably larger when moved to test
data. Despite the highlighted differences, statistical tests for Boston Housing
Training and Test reveal no statistical differences (Tables 4 and 5). Given that
FG cannot account for the feature variety of Boston Housing, it is remarkable
that the approach still achieves competitive results, especially in the test data.
It is possible that a specifically designed FG that uses expert knowledge to
group the features based on function could achieve even better and statistically
significant results.

Table 4: P-value for Mann-Whitney Statistical Tests using Bonferroni correction
with significance level α = 0.05 for Boston Housing Training. Bold indicates that
the method in the corresponding row is statistically superior.

Boston Housing
Training

SM+SG SM+FG AFM+SG AFM+FG

SM+SG
SM+FG 0.530
AFM+SG 0.263 0.763
AFM+FG 0.531 0.361 0.548

Table 5: P-value for Mann-Whitney Statistical Tests using Bonferroni correction
with significance level α = 0.05 for Boston Housing Test. Bold indicates that the
method in the corresponding row is statistically superior.

Boston Housing
Test

SM+SG SM+FG AFM+SG AFM+FG

SM+SG
SM+FG 0.929
AFM+SG 0.377 0.333
AFM+FG 0.364 0.403 0.963

6 Conclusion

In this paper, we propose AFM, a mutation method that leverages grammar-
based GP’s properties to replicate natural evolutionary phenomena. This ap-
proach divides the single mutation probability commonly found in such ap-
proaches into a mutation array, where each grammar non-terminal has a cor-
responding mutation rate. Each individual has a mutation array that co-evolves
with the genetic code. A randomly sampled value from a Gaussian distribution
adjusts the mutation rates of all individuals in each generation.
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We also propose a grammar-design approach, Function Grouped Grammars,
to enhance the effectiveness of the mutation proposed. Function Grouped Gram-
mars organize non-terminals based on functional similarity rather than the se-
mantic similarity common in the field. We compare our proposals with a baseline
(standard mutation and standard grammar) and find that, when combined, our
approaches are statistically superior or similar to the baseline in three relevant
GP benchmarks.

This approach still requires parameter tuning, one of the problems tackled by
the literature by proposing adaptive mutations. However, few of these approaches
consider different values for different symbols [34]. This work shows that an
adaptive mutation rate can be beneficial for search and grammar design amplifies
these benefits.

6.1 Future Work

The results of our experiments are promising, but additional tests are essential
to validate our approach further. The benchmarks addressed are relevant in GP,
but a more extensive (and varied) set of benchmarks could bring meaningful
insights into the general applicability of the FG+FM.

Regarding AFM, we use a fixed starting mutation rate in all experiments.
Our method leverages adaptability as a tool for improved evolution, but we did
not investigate the potential of AFM as a replacement for mutation rate tuning.
Further development of AFM may also lead to an implementation that does
not rely on Gaussian distributions and sigma tuning for perturbations. In the
future, we want to explore alternatives where AFM is a competitive, parameter-
less alternative to standard mutation. Another line of work is to experiment with
different inheritance mechanisms during crossover. In this work, the offspring
inherited the array of probabilities from the most fitted parent. It would be
interesting to explore the random selection of the parent that passes the array
or the application of the existing SGE crossover to the mutation arrays of the
parents. Such approaches would better preserve the advantages of co-evolution,
possibly improving results.

Function Grouped Grammars can also be further investigated. In this work,
we still apply this idea conservatively. Considering the FG used in experiments,
it is still possible to separate constants from variables and commutative oper-
ators from non-commutative operators. Barring small details, we use the same
grammar for all tasks. Applying the same approach to problems requiring more
complex grammar would be interesting, as such problems yield more opportuni-
ties for function grouping.

Finally, the applicability of these ideas to different, compatible grammar-
based GP must also be investigated. While this works focuses on PSGE, the
same approach is easily applicable in SGE [5], Co-PSGE [22], and even more
different systems like πGE [19]. Any grammar-based approach where genes are
tied to a non-terminal may benefit from FG+FM.
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