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Abstract—The grammars used in grammar-based Genetic Pro-
gramming (GP) methods have a significant impact on the quality
of the solutions generated since they define the search space by
restricting the solutions to its syntax. In this work, we propose
Probabilistic Structured Grammatical Evolution (PSGE), a new
approach that combines the Structured Grammatical Evolution
(SGE) and Probabilistic Grammatical Evolution (PGE) represen-
tation variants and mapping mechanisms. The genotype is a set
of dynamic lists, one for each non-terminal in the grammar, with
each element of the list representing a probability used to select
the next Probabilistic Context-Free Grammar (PCFG) derivation
rule. PSGE statistically outperformed Grammatical Evolution
(GE) on all six benchmark problems studied. In comparison to
PGE, PSGE outperformed 4 of the 6 problems analyzed.

Index Terms—Grammatical Evolution, Grammar-based Ge-
netic Programming, Grammar Design, Probabilistic.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are metaheuristic algorithms
driven by an objective function that follow a trial-and-error
approach to problem-solving. Inspired by the principles of
natural selection and genetics, these algorithms evolve a
population of individuals towards better solutions, using an
objective function, over several generations. The quality of
solutions improves by selecting the most promising ones
(taking into account the objective function), and applying
stochastic variations using operators similar to mutations and
recombinations that take place in biological systems, where
individuals with higher fitness are more likely to survive and
reproduce.

Genetic Programming (GP) [1] is a branch of EAs in which
individuals are represented as computer programs that evolve
to solve problems, without the need to program the solution
explicitly. Grammatical Evolution (GE) [2]–[4] is a GP ap-
proach that uses a Context-Free Grammar (CFG) to constrain
the search space of possible solutions. The individuals are
represented by a list of integers (i.e., genotype), where each
value (i.e., codon) is used to choose a production rule of
the grammar until it forms a solution to the problem (i.e.,
phenotype).

Despite being one of the most widely used GP variants, GE
is not exempt from having some issues [5], [6]. GE has low
locality, which means that small changes in the genotype often
cause large changes in the phenotype, causing exploitation to
be replaced for exploration, which can lead to a behaviour

similar to random search [7]. GE also suffers from high
redundancy, which means that often changes in the genotype
do not cause changes in the phenotype [5]. To overcome these
issues, numerous methods have been proposed in the literature.
Most of these methods perform changes in grammars [8]–
[11], representation of individuals [12]–[17] or population
initialization [18]–[22].

In this paper we propose a new method called Probabilistic
Structured Grammatical Evolution (PSGE) that results from
the combination of the representation of Structured Grammat-
ical Evolution (SGE) and the mapping mechanism of Proba-
bilistic Grammatical Evolution (PGE). The main motivation
for this work rises from the interest of creating a method
that inherits the main advantages of the representation used
by SGE, namely the high locality and low redundancy [23],
[24], with the probabilistic mapping form PGE that is able
to guide the evolutionary process towards better solutions by
iteratively adjusting the biases of the grammar.

Identically to SGE, the genotype in PSGE is a set of
dynamic lists of real values, with a list for each non-terminal
of the grammar. Each element of the list (i.e., codon) repre-
sents the probability of choosing a production rule from the
grammar, which are updated based on the phenotype of the
best individual at the end of each generation, using the same
mapping mechanism proposed by PGE. PSGE is compared
with GE, PGE and SGE on six different benchmark problems
and the results showed that PSGE version is better than GE
and PGE.

The remainder of this work is structured as follows: Section
II presents the background necessary to understand the work
presented, introducing GE as well as related work. Section III
present the proposed method, detailing the representation and
mapping method used. Section IV details the experimentation
framework used and Section V the experimental results regard-
ing performance. Section VI gathers the main conclusions and
provides some insights regarding future work.

II. GRAMMATICAL EVOLUTION

GE [2]–[4] is a grammar-based GP approach used to evolve
programs. Each individual in the population is represented by
a list of integers, called genotype, and each value is randomly
generated in the interval [0, 255]. The elements of the list are
used in the mapping process to create the phenotype, that is



the solution of the problem, using the production rules defined
by a CFG. A grammar is a tuple G = (NT, T, S, P ) where
NT and T represent the non-empty set of Non-Terminal (NT)
and Terminal (T) symbols, S is an element of NT in which the
derivation sequences start, called the axiom, and P is the set
of production rules. The rules in P are in the form A ::= α,
with A ∈ NT and α ∈ (NT ∪ T )+. The NT and T sets
are disjoint. Each grammar defines a language L(G) = {w :
S

∗⇒ w, w ∈ T ∗}, that is the set of all sequences of terminal
symbols that can be derived from the axiom. The symbol ∗
represents the unary operator Kleene star.

<expr> ::=<expr><op><expr>
|<var>

<op> ::=+

| −
| ∗
| /

<var> ::= x
| y
| 1.0

Fig. 1. Example of a CFG.

The mapping from genotype to phenotype is done starting
from the axiom of the grammar and expanding the leftmost
non-terminal. The codons of the genotype are used to choose
which production rule to expand by applying the modulo op-
erator (mod) between the codon and the number of derivation
rules of the respective non-terminal.

Genotype
[34, 13, 9, 151, 95, 221, 23, 98, 145, 42, 153]

<expr> →<expr><op><expr> 34mod2 = 0

<expr><op><expr> →<var><op><expr> 13mod2 = 1

<var><op><expr> → x<op><expr> 9mod3 = 0

x<op><expr> → x /<expr> 151mod4 = 3

x /<expr> → x /<var> 95mod2 = 1

x /<var> → x / 1.0 221mod3 = 2

Phenotype: x/1.0

Fig. 2. Example of the genotype-phenotype mapping of GE.

An example of the genotype-phenotype process is shown
in Fig. 2, using the example of grammar presented in Fig.
1. The mapping begins with the axiom of the grammar,
<expr>, which has two expansion alternatives, and the first
unused codon of the genotype, 34. By applying the modulo
operator between the codon and the number of production
rules, 34mod(2) = 0, we obtain the index of the rule to
be expanded which is <expr><op><expr>. This procedure
is repeated until there are no more non-terminal symbols to
expand or numbers from the genotype to read. In the last case,
if we still have non-terminals to expand, we can employ a
wrapping technique, in which the genotype is reused until it
yields a valid individual or the predefined number of wraps is
reached. If we haven’t mapped all of the non-terminals after
all of the wraps, the mapping procedure will stop and the
individual will be considered invalid. The fitness function is

used to evaluate each individual’s phenotype, and then the
population is subjected to selection procedures.

A. Related Work

GE is one of the most popular GP variants, and it has
undergone various modifications over the years to address
some of its major criticisms, namely high redundancy and
low locality. Low locality refers to small genotype changes
that result in large phenotypic changes, whereas high redun-
dancy refers to multiple genotypes corresponding to the same
phenotype. The majority of these proposed solutions include
changes to grammars [8]–[11], individual representation [12],
[13], [15]–[17], [25], or population initialization [18]–[22].

SGE [25] addresses GE’s locality and redundancy issues
while achieving better performance results [14]. The genotype
in SGE is a set of dynamic lists of ordered integers, one
list for each non-terminal of the grammar. Each value in
the list represents which production rule to select from the
non-terminal. Different grammar-based GP approaches were
compared in [26], and the authors demonstrated that SGE
outperformed several grammar-based GP representations in
some problems.

Position Independent Grammatical Evolution (πGE) [16]
is a method that uses a new representation and mapping
mechanism in which the genotype of the individual determines
the order of expansion of the non-terminals, reducing the
positional dependency that exists in GE. Individual genotypes
are made of tuples of two values (nont, rule), with nont
determining which non-terminal to expand next and rule de-
termining the rule to derive from that non-terminal. On several
problems, this technique outperformed GE, with statistical
differences.

Chorus [17] is another method that allows for positional
independence, with each gene encoding only one production
of the grammar. This strategy, however, has not been proved
to be superior than the GE standard.

The design of the grammars is another aspect that has had
some attraction for researchers since they define the search
space, and thus the choice of grammar can affect the speed of
convergence to the best solution [9]. Some research has been
done to study the performance of GE with various types of
grammars, such as the use of recursively balanced grammars
[8], [9] and the reduction of non-terminal symbols [9], [10].

Harper et al. [8] demonstrated that the grammar used at the
start of the evolutionary process can have a significant impact
on the solutions, such as generating a large number of invalid
individuals when using recursive grammars. It has also been
demonstrated that when a balanced grammar is used, there is
more variety in the size of solutions.

Nicolau et al. [9] tested GE with different grammars, which
included balanced grammars, grammars with corrected biases,
and grammars with unlinked productions. The experimental
tests using a recursively balanced grammar, in which there
is a non-recursive production for every recursive one, yielded
better results than the original grammar. However it resulted
in a larger number of individuals consisting of a non-terminal



symbol. Nicolau [10] proposed a method for reducing the
number of non-terminal symbols, replacing them with their
productions, which, while showing a slight improvement in
performance, has the disadvantage of producing complex
grammars that are difficult to read.

Another area of research has been the evolution of the
grammar throughout the evolutionary process [11]–[13], [15].

Grammatical Evolution by Grammatical Evolution ((GE)2)
[11] is a method where the grammar and genetic code co-
evolve. The method employs two distinct grammars: universal
grammar and solution grammar. The structure of the solution
grammar, which is used to map the individuals, is dictated
by the universal grammar. This method has been shown to
be effective in developing biases toward non-terminal sym-
bols. Later, it was implemented into a new algorithm, meta-
Grammar Genetic Algorithm (mGGA) [27], which resulted in
improved performance.

PGE [15] is a recent variant of GE in which the individ-
uals are mapped using a Probabilistic Context-Free Grammar
(PCFG) and the genotype is a list of real numbers. A PCFG
is a quintuple PG = (NT, T, S, P, Probs) where NT and
T represent the non-empty set of Non-Terminal (NT) and
Terminal (T) symbols, S is an element of NT called the
axiom, P is the set of production rules, and Probs is a
set of probabilities associated with each production rule. The
mapping begins with the leftmost non-terminal, and the rule
whose probability interval includes the codon is chosen for
each non-terminal to be expanded. The PCFG probabilities
are updated at the end of each generation based on the
expansion rules used to create the best individual of the current
generation alternating with the best individual overall. PGE
proved to be superior than GE with statistical differences in
the two problems studied.

Kim et al. [12] proposed Probabilistic Model Building
Grammatical Evolution (PMBGE), in which the mapping is
based on a PCFG and the probabilistic technique Estima-
tion Distribution Algorithm (EDA), which also replaces the
mutation and crossover operators. The probabilities of the
grammar are changed every generation based on the frequency
of the rules expanded by the best individuals. This technique
generates a new population from the new grammar at each
generation. When compared to GE, the proposed approach
performed similarly. Later, Kim et al. [13] adapted Conditional
Dependency Tree (CDT) to the mechanism of updating the
grammar, creating cdPMBGE which takes into account the de-
pendencies between production rules. The results revealed no
statistical differences between GE and the proposed approach.
This method outperformed GE with statistical differences in
two of the four problems analysed.

III. PROBABILISTIC STRUCTURED GRAMMATICAL
EVOLUTION

In this work we propose PSGE 1 in which the representation
of individuals and the mapping mechanism is a combination

1The implementation of PSGE is available at:
https://github.com/jessicamegane/psge

of the approaches followed by SGE and PGE. The mapping
resorts to a PCFG to choose the derivation rules. At the
end of each generation the probabilities of the grammar are
updated according to the production rules expanded by the
best individual of the current generation or the best individual
overall.

The individuals are represented by a set of dynamic lists,
with each list being associated with a non-terminal of the
grammar. The lists contain an ordered sequence of real num-
bers, with each codon corresponding to the probability of
choosing a production rule.

The pseudo-code of the initialization of individuals in PSGE
is presented in Alg. 1. The algorithm takes as parameters
the genotype (which starts with an empty list for each non-
terminal), the non-terminal symbol to expand (the axiom of the
grammar in the first iteration), the current depth (which starts
at 0), the maximum depth limit and the PCFG. The function
is recursive and ends when the genotype belongs to a valid
individual. At each iteration a random value between 0 and
1 is generated and added to the list of the non-terminal to
be expanded (Alg. 1, lines 2-3). To determine which rule to
expand next based on the new codon, the mapping process is
simulated (Alg. 1, line 4).

Algorithm 1 Random candidate solution of PSGE
1: procedure CREATEINDIVIDUAL(genotype, symb, depth,

max_depth, pcfg)
2: codon = random(0,1)
3: genotype[symb].append(codon)
4: selected_rule = generate_expansion(symb, codon,

pcfg, depth, max_depth)
5: expansion_symbols = pcfg[symb][selected_rule]
6: for sym in expansion_symbols do
7: if not is_terminal(sym) then
8: createIndividual(genotype, symb, depth + 1,

max_depth, pcfg)
9: end if

10: end for
11: end procedure

The approach for genotype-phenotype mapping is described
in Alg. 2. The genotype, a counter called positions_to_map
(which is initially empty and is used to store the genotype
position of each non-terminal list at the current iteration), the
symbol to expand (which starts in the axiom), the current
depth, the maximum depth limit, and the grammar are all
passed as arguments to the algorithm. If more codons are
required to construct a valid individual during mapping, they
will be created at random and added to the genotype (Alg.
2, lines 3-6). One of the benefits of this representation is that
with the depth limit, it is feasible to add productions as needed
without the risk of bloat (a significant increase in the size of
the solutions [28]), ensuring that valid individuals are always
created.

To choose the derivation rule to expand, we use the function
that is described in Algorithm 3. The function receives as



Algorithm 2 Genotype-Phenotype mapping of PSGE
1: procedure MAPPING(genotype, positions_to_map, symb,

depth, max_depth, pcfg)
2: phenotype = ""
3: if positions_to_map[symb] >= len(genotype[symb])

then
4: codon = random(0,1)
5: genotype[symb].append(codon)
6: end if
7: codon = genotype[symb][positions_to_map[symb]]
8: selected_rule = generate_expansion(symb, codon,

pcfg, current_depth, max_depth)
9: expansion = pcfg[symb][selected_rule]

10: positions_to_map[symb] += 1
11: for sym in expansion do
12: if is_terminal(sym) then
13: phenotype += sym
14: else
15: phenotype += mapping(genotype,

positions_to_map, sym, depth + 1, max_depth, pcfg)
16: end if
17: end for
18: return phenotype
19: end procedure

parameters the non-terminal symbol to be expanded, the
codon, the grammar, the current depth and the maximum depth
established. The mechanism for choosing the derivation rule is
based on that of PGE [15], in which the rule whose probability
interval incorporates the value of the codon is chosen (Alg.
3, lines 15-21), however for PSGE when the depth limit is
reached, only non-recursive production rules are considered
(Alg. 3, lines 4-13). In this case, the probabilities of the non-
recursive rules are adjusted proportionally so that their sum
is 1. The codon value is compared with the new probability
values, and the rule whose probability range includes the
codon value is chosen.

PCFG Prob.
<expr> ::=<expr><op><expr> [0.00; 0.37]

|<var> ]0.37; 1.00]

<op> ::=+ [0.00; 0.22]

| − ]0.22; 0.39]

| ∗ ]0.39; 0.68]

| / ]0.68; 1.00]

<var> ::= x [0.00; 0.41]

| y ]0.41; 0.67]

| 1.0 ]0.67; 1.00]

Fig. 3. PCFG example. Prob. represents the range of values covered by each
production rule, and the size of the range corresponds to the probability of
that production rule being chosen.

An example of an individual’s mapping process is depicted
in Fig. 4, using the grammar in Fig. 3. The process begins by
expanding the axiom of the grammar, <expr>, using the first
codon in the list of the respective non-terminal of the genotype,

Algorithm 3 PSGE function to select an expansion rule
1: procedure GENERATE_EXPANSION(symb, codon, pcfg,

depth, max_depth)
2: cum_prob = 0.0
3: if depth ≥ max_depth then
4: nr_prods = get_non_recursive_prods(pcfg[symb])
5: total_nr_prods = sum(nr_prods.getProb())
6: for prod in non_recursive_prods do
7: new_prob = prod.getProb() / total_nr_prods
8: cum_prob = cum_prob + new_prob
9: if codon ≤ cum_prob then

10: selected_rule = prod
11: break
12: end if
13: end for
14: else
15: for prod in pcfg[symb] do
16: cum_prob = cum_prob + prod.getProb()
17: if codon ≤ cum_prob then
18: selected_rule = prod
19: break
20: end if
21: end for
22: end if
23: return selected_rule
24: end procedure

in this case 0.19. The non-terminal <expr> presents two
derivation rules, with different probabilities of being chosen.
The 0.19 codon is included in the range of probabilities of
the first rule, <expr><op><exp>, therefore expansion is
made for that rule. The derivation is always done from the
leftmost non-terminal, so the next non-terminal to expand is
<expr>. The next available codon in the list of the non-
terminal <expr> is 0.46, which falls within the probability
range of the second expansion rule, <var>. The <var> will
be the next to expand and has three derivation rules. 0.32 is the
first codon available in the list of < var > of the genotype,
and falls within the range of probabilities covered by the first
production rule, x, which is a terminal symbol, so <op> is
the next symbol to expand. The procedure is repeated until a
valid individual is formed.

Genotype
<expr> <op> <var>

[0.19,0.46,0.87] [0.27] [0.32, 0.64]

<expr> →<expr><op><expr> (0.19)

<expr><op><expr> →<var><op><expr> (0.46)

<var><op><expr> → x<op><expr> (0.32)

x<op><expr> → x -<expr> (0.27)

x -<expr> → x -<var> (0.87)

x -<var> → x - y (0.64)

Phenotype: x− y

Fig. 4. Example of the genotype-phenotype mapping of PSGE with a PCFG.



At the end of each generation the best individual overall
and the best individual from the current generation are used
alternately to update the PCFG probabilities, using the same
mechanism proposed for PGE [15]. All individuals are re-
mapped to update the phenotype according to the new updated
grammar.

For each production i of each non-terminal j we have a
counter with the number of times that each production was
chosen, and the probability (prob) of the PCFG of choosing
that production. If the counter is greater than zero, that is,
the production rule was used to map the individual, we use
(1). If the counter is zero, that is, the production rule has not
been used by the individual, we use (2). The learning factor
is represented by λ, with λ ∈ [0, 1], and is used to make the
transitions on the search space smoother.

probi = min(probi + λ ∗ counteri∑j
k=1 counterk

, 1.0) (1)

probi = probi − λ ∗ probi (2)

After updating the probabilities using the equations, these
are adjusted until the sum of the probabilities of each produc-
tion rule of each non-terminal is 1.

A. Variation Operators

Genetic operators are used to introduce genotype-level
changes in individuals, such as mutation and crossover. The
mutation operator changes randomly chosen codons, and in
PSGE a Gaussian mutation is applied to these codons, keeping
the new value in the interval [0, 1]. This type of mutation is
widely used in the literature and has proven to be an effective
method for making small changes in the search space [29],
[30].

Genotype before mutation:
< expr > < op > < var >

[0.19,0.46,0.87] [0.27] [0.32, 0.64]

Genotype after mutation:
< expr > < op > < var >

[0.19,0.29,0.87] [0.27] [0.32, 0.28]

Fig. 5. Example of PSGE’s mutation on one codon of the genotype.

Fig. 5 is an example of Gaussian mutation in an indi-
vidual. Assuming that the second codon of the non-terminal
< expr >, was randomly selected (0.46) and the value
generated with a normal distribution of mean 0 and standard
deviation 0.50 (N(0, 0.50)) was −0.17, the codon will now
assume a value of 0.29.

The crossover operator combines the genetic material of
two individuals to generate an offspring, and is based on the
crossover proposed by SGE [25]. The offspring inherits the
list of each non-terminal from one of the parents, and this
decision is made based on a randomly generated binary mask.
The mask contains a binary value for each list of the genotype

Parents genotype:
Parent 1:

< expr > < op > < var >

[0.19,0.46,0.87] [0.27] [0.32,0.64]

Parent 2:
< expr > < op > < var >

[0.02,0.90,0.13] [0.48] [0.75,0.42,0.56]

Mask and offspring after crossover:
Mask:

< expr > < op > < var >

1 1 0

Offspring:
< expr > < op > < var >

[0.02,0.90,0.13] [0.48] [0.32,0.64]

Fig. 6. Example of PSGE’s crossover between two individuals, generating
one offspring.

(i.e., one for each non-terminal of the grammar). In Fig. 6 are
represented an example of crossover, showing the parents, the
mask used and the offspring. In the example, the descendant
inherited the lists of the non-terminals < expr > and < op >
from Parent 2, and the list of the non-terminal < var > from
Parent 1. In case two descendants are generated, the other
would get the opposite lists.

IV. EXPERIMENTAL SETUP

The performance of PSGE will be carried out following
the framework proposed by Whigham et al. [7], examining
the evolution of the mean best fitness of each generation over
100 independent runs in six problems of different scopes. The
results will be compared with the standard GE, PGE, and SGE.
Table I presents the parameters used by all the approaches.

TABLE I
PARAMETERS USED IN THE EXPERIMENTAL ANALYSIS FOR GE, PGE,

SGE AND PSGE.

Parameters GE PGE SGE PSGE
Population Size 1000

Generations 50
Elitism Count 100
Mutation Rate 0.05
Crossover Rate 0.90

Tournament 3
Size of Genotype 128 -

Max Depth - 10

In what concerns the variation operators, GE and PGE use a
one point crossover. The mutation of GE replaces the selected
codons by new ones randomly generated in the interval [0, 255]
and in the case of PGE a float mutation is used, in which the
codons are replaced by new ones generated in the interval
[0, 1]. The wrapping mechanism was removed from GE and
PGE. Regarding the genetic operators used by SGE and PSGE,
these methods all use the same crossover, which is the one



presented in Section III-A. Regarding the mutation operator,
in the case of SGE, the mutated codon is replaced with a
different valid option, while in PSGE a Gaussian mutation
with N(0, 0.50) in the codon value is performed.

A detailed description of the problems and the grammars
used can be found in the work done by Lourenço et al. [26]
and Whigham et al. [7], and were selected on the basis of
the recommendations of McDermott et al. [31]. The problems
considered were the quartic symbolic regression, pagie sym-
bolic regression [32], the Boston Housing symbolic regression
[33], 5-bit even parity, 1-bit Boolean multiplexer and the Santa
Fe artificial ant problem [1]. The objective functions used to
evaluate the individuals consider the minimization of the error.
In the case of Symbolic Regression and classification problems
the fitness is the Root Relative Squared Error (RRSE) between
the individual’s solution and the target on a data set. For
the Boolean functions, the error is the number of incorrect
predictions, and for the Path finding problem, the fitness is
the number of pieces remaining after exceeding the step limit.

V. RESULTS

A statistical analysis was done to be able to fairly compare
the different methods and support our analysis. Since the
populations were independently initialized and the results do
not meet the criteria for parametric tests, the Kruskal-Wallis
non-parametric test was used to check for meaningful differ-
ences between the different methods. When the methods show
differences, we verify in which pairs the differences exist,
using the Mann-Whitney post-hoc test with the Bonferroni
correction. To determine how significant the differences are,
the effect size r was calculated. The "~" sign was used when
there were no significant differences between samples, the "+"
sign was used when the effect size was small (r ≤ 0.3), "++"
was used when the effect size was medium (0.3 < r ≤ 0.5),
and "+++" was used when the effect size is large (r > 0.5).
For all the statistical tests we considered a significance level
of α = 0.05.

TABLE II
RESULTS OF THE MANN-WHITNEY POST-HOC STATISTICAL TESTS. THE

BONFERRONI CORRECTION IS USED CONSIDERING A SIGNIFICANCE
LEVEL OF α = 0.05. VALUES IN BOLD MEAN THAT PSGE IS

STATISTICALLY BETTER THAN GE, PGE OR SGE.

Problem PSGE-GE PSGE-PGE PSGE-SGE
Quartic Polynomial 0.000 0.003 0.299
Pagie Polynomial 0.033 0.008 0.013
Boston Housing Train 0.000 1.000 0.001
Boston Housing Test 0.000 0.525 0.577
5-bit Parity 0.000 0.000 0.131
11-multiplexer 0.000 0.000 0.000
Santa Fe Ant Trail 0.000 0.000 0.317

Focusing on the results of Tables II and III, several observa-
tions about the approach proposed in this work can be drawn.
In bold are the p-values of the comparisons where PSGE is
statistically better than GE, PGE or SGE.

PSGE is statistically better than GE on all problems. Com-
paring the performance of PSGE with PGE, we see that PSGE

TABLE III
EFFECT SIZE BETWEEN PSGE AND GE, PGE AND SGE.

Problem PSGE-GE PSGE-PGE PSGE-SGE
Quartic Polynomial ++ + ~
Pagie Polynomial + - -
Boston Housing Train + ~ -
Boston Housing Test ++ ~ ~
5-bit Parity +++ +++ ~
11-multiplexer ++ +++ - - -
Santa Fe Ant Trail + + ~

outperforms PGE with significant differences on four of the
problems. In relation to the SGE, PSGE never outperforms.

Fig. 7. Performance results for the Quartic Polynomial. Results are the mean
best fitness of 100 runs.

Fig. 7 shows the evolution of the mean best fitness for
the quartic polynomial. We can see that the decrease in SGE
and PSGE is similar, with SGE ending up with slightly better
average fitness, but with no statistical differences between the
methods (Table II). Looking at the PGE curve, we notice that it
starts with better fitness, being surpassed by SGE and PSGE
around generation 3, decreasing more slowly in relation to
the other methods. From generation 20 the fitness starts to
move away from GE values, however these never reach the
performance of SGE and PSGE during the 50 generations.
PSGE presents statistical differences from PGE with a small
effect size.

Fig. 8. Performance results for the Pagie Polynomial. Results are the mean
best fitness of 100 runs.



The results for the pagie polynomial are shown in Fig. 8.
By analysing the plot we see that all methods perform better
than GE, with the curves decreasing faster, and looking at the
statistical test results in Table II we see that PSGE is better
than GE statistically with a small effect size. The method that
ends up with the best average fitness is PGE, which is in line
with the results presented in [15].

Fig. 9. Testing results for the Boston Housing. Results are the mean best
fitness of 100 runs.

Regarding the results for the Boston Housing problem, these
are divided in 90% for training and 10% for testing. The
test results are the most relevant since they are the ones that
evaluate the models with unseen data. The statistical tests show
that in this problem PSGE only presents statistical differences
relative to GE, having a small effect size in training and
medium in testing. PSGE ends with better fitness than PGE,
however these do not present significant differences. We also
see that when comparing with SGE in the training, PSGE
presents small statistical differences, being worse, however,
in the test, these are not significant. The small improvement
in the results of test PSGE over training when compared to GE
and PSGE, may indicate that PSGE has a better generalisation
ability to predict unknown data.

Fig. 10. Performance results for the 5-bit Even Parity problem. Results are
the mean best fitness of 100 runs.

Looking at the results for the 5-bit Even Parity problem,
we observe that the performance of SGE and PSGE is better
than that of GE and PGE, starting with lower fitness values.

According to the statistical results, PSGE is statistically better
than GE and PGE, with a large effect size. In comparison
to SGE we see that the decrease of PSGE is slightly faster,
maintaining better average fitness for 30 generations, and then
it is reached by SGE, presenting no significant differences
between the two methods.

Fig. 11. Performance results for the 11-bit Boolean Multiplexer problem.
Results are the mean best fitness of 100 runs.

Regarding the results of the tests done for the 11-bit Boolean
Multiplexer (Fig. 11), we can see that the methods behave
quite differently. As observed previously for the 5-bit parity
problem (Fig. 10), the average fitness of SGE and PSGE
individuals at the beginning of the evolutionary process is
better, with significant differences between PSGE and GE,
with a medium effect size, and also with PGE presenting a
large effect size. In this problem we see that the decrease of
SGE is much steeper, rapidly moving away from the average
fitness of PSGE.

Fig. 12. Performance results for the Santa Fe Artificial Ant problem. Results
are the mean best fitness of 100 runs.

The last analysis studies the performance on the Santa Fe
Ant problem (Fig. 12). In contrast to the previous analyses, in
this problem the method that performs worst over generations
is PGE. On the other hand we observe that the fitness of the
individuals of SGE and PSGE decreases rapidly, approaching
the optimal solution after 20 generations. PSGE is statistically
better than GE and PGE, not presenting statistical differences
in relation to SGE.



VI. CONCLUSION

GE is a grammar-based GP variant that has attracted the
attention of many researchers and practitioners, since its
proposal in the late 1990s and it has been applied with success
to many problem domains. However, it has been shown that
it suffers from some issues, such as low locality and high
redundancy [5], [6].

In grammar-based GP, the choice of the grammar has a
significant impact on the quality of the generated solutions as it
is the grammar that defines the space of possible solutions. Our
goal work was to create a variant of GE that could guide the
search towards better solutions, inserting bias in the production
rules that generate better individuals, in order to achieve a
better overall performance, and at the same time overcome
the problems of GE.

In this paper we present PSGE, a new variant of GE that
introduces a new representation alternative to SGE, using
PGE’s mapping mechanism. The genotype is a set of dynamic
lists, one for each non-terminal of the grammar. Each codon
in the list represents the likelihood of selecting a production
rule. At the end of each generation the PCFG is updated and
individuals are remapped, same as in PGE.

The proposed method is compared to the standard versions
of GE, PGE and SGE on different benchmark problems,
analysing the evolution of the mean best fitness. PSGE outper-
formed GE with statistical differences in all problems, while
it outperformed PGE in 4 of the 6 problems. Regarding the
relative performance with SGE, we show that the methods
obtain similar performances.

PSGE proved to be a good alternative to PGE, since it
presents better performance, keeping the advantage of using a
probabilistic grammar. At the end of the evolutionary process
we get a specialised grammar for the problem at hand which
can be used to obtain information about which production
rules are more relevant to create the best individuals. The
use of a PCFG can also be used by manually guide the
search, for example, in the real-world problems where we
have some information regarding some problems, we can alter
the probabilities of the grammar by introducing some known
biases. As future work it will be interesting to analyze the
average fitness of sample populations created with a previously
evolved grammar and also to analyze the fitness evolution
over multiple generations. Another line of work that will be
interesting to analyze is to test the algorithm behavior with
the probabilities of grammars initialized randomly, or with
different types of grammars, similar to the study done by
Nicolau et al. [9].
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